Skip to main content

Applications of the Radiocarbon Coupling Function Method to Investigations of Planetary Mixing and Exchange Processes; Influence of H-Bomb Explosions on the Environment; Cosmic Ray Variations in the Past

  • Chapter
Cosmic Rays in the Earth’s Atmosphere and Underground

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

  • 458 Accesses

Abstract

In Chapter 10 we considered the general equations and its solutions determining the space-time variations of cosmogenic nuclides production by CR and its contents in the space, inside astrophysical bodies, in atmospheres of stars and planets by the coupling function method which were developed before for CR variations research. Here we introduce and calculate the local and polar radiocarbon coupling functions for the Earth’s atmosphere, taking into account vertical mixing of elements. We then introduce and calculate the planetary coupling function, taking into account the planetary element mixing and influence of geomagnetic field on CR planetary distribution. For the contents of radiocarbon in the atmosphere and in dated samples there are very important exchange processes between several reservoirs on the Earth. As a first approximation we consider two-reservoir model and then the model of five-reservoir element exchange. By comparison with experimental data on radiocarbon contents we estimate the exchange constants. On the basis of methods developed and solutions of equations obtained we determine the time evolution of the radiocarbon production rate and contents in the Earth’s atmosphere. We consider data of H-bomb explosions in the atmosphere, on CR time variations in the past, caused by changes of geomagnetic field, by solar activity cycles, and by possible local supernova explosions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson E.C. “The production and distribution of natural radiocarbon”, Ann. Rev. Nuclear Sci., 2. 63–78 (1953).

    Article  ADS  Google Scholar 

  • Anderson E.C. and W.F. Libby “World-wide distribution of natural radiocarbon”, Phys. Rev, 81, 64–69 (1951).

    Article  ADS  Google Scholar 

  • Aoki T., H. Sakurai, and W. Kato “Altitude distribution of C-14 concentration by Geant-4”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4151–4154 (2003).

    ADS  Google Scholar 

  • Attolini M.R., S. Cecchini, M. Galli, and T. Nanni “The Gleissberg and 130 year periodicity in the cosmogenic isotopes in the past: the Sun as a quasi-periodic system”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 4, 323–326 (1987a).

    Google Scholar 

  • Attolini M.R., S. Cecchini, C. Cini Castagnoli, M. Galli, and T. Nanni “The 11 year cycles in solar activity before Maunder minimum”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 4, 324–327 (1987b).

    Google Scholar 

  • Attolini M.R., S. Cecchini, H. Galli, T. Nanni “Solar variations in radiocarbon”, Proc. 21 th Intern. Cosmic Ray Conf., Adelaide, 7, 132–135 (1990).

    Google Scholar 

  • Bonani G., H.J. Hofmann, E. Morenzoni, M. Nessi, M. Suter, and W. Wolfli, “The ETH/SIN Dating Facility: A Status-Report”, Radiocarbon, 28, No. 2A, 246–255 (1986).

    Google Scholar 

  • Burlatskaya S.P. “Pecular features of geomagnetic field variations on archeomagnetic data”, Physics of the Earth (in Russian), No. 5, 81–86 (1987).

    Google Scholar 

  • Cini Castagnoli G., G. Bonino, A. Provenzale, and M. Serio “Long-term solar cycles in the TL profile of the GT14 core and in tree ring radiocarbon data”, Proc. 21 th Intern. Cosmic Ray Conf., Adelaide, 7, 152–154 (1990).

    Google Scholar 

  • Cini Castagnoli G., G. Bonino, E. Callegari, C. Taricco, and Zhu Guang-mey “Thermoluminescence in sea sediments during the cosmogenic isotopes enhancement 35000 yr BP”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 834–837, (1993).

    Google Scholar 

  • Cini Castagnoli G., G. Bonino, B. Lehman, and C. Taricco “Cosmogenic isotopes, geomagnetic and geochemical signals in a Mediterranean sea sediment at 35000 yr BP”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1204–1207, (1995).

    Google Scholar 

  • Cini Castagnoli G., G. Bonino, P. Della Monica, and C. Taricco “Common long term periodicities in cosmogenic and climatic records over the last 3000 years”, Proc. 25th INTERN. COSMIC RAY Conf., Durban, 2, 469–472 (1997).

    Google Scholar 

  • Craig H. “Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide”, Geochim. Cosmochim. Acta, 12, 133–149 (1957).

    Article  ADS  Google Scholar 

  • Craig H.D “The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea”, Tellus, 9, 1–17 (1957).

    Article  ADS  Google Scholar 

  • Damon P.E., J.C. Lerman, and A. Long “Temporal Fluctuations of Atmospheric 14C: Causal Factors and Implications”, Ann. Rev. Earth Planet. Sci., 6, 457–494 (1978).

    Article  ADS  Google Scholar 

  • Dergachev V.A. “Variation of cosmogenic radiocarbon concentration and character of geomagnetic field changes in the past”, Proc. 20th Intern. Cosmic Ray Conf, Moscow, 4, 292–295 (1987).

    Google Scholar 

  • Dergachev V.A. “Cosmogenic radiocarbon, climate and powerful manifestation of solar activity in the past”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 857–860 (1993).

    Google Scholar 

  • Dergachev V.A.“Medium- and long-term cyclic variations of cosmic rays in the past”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1200–1203 (1995a).

    Google Scholar 

  • Dergachev V.A. “Large-scale cyclic variations of cosmogenic radiocarbon concentration”, Izvestia Russian Ac. of Sci., Ser. Phys., 59, No. 4, 91–96 (1995b)

    Google Scholar 

  • Dergachev V.A. and S.Kh. Akhmetkereev “On the nature of supersecular variations of radiocarbon in the Earth ’s atmosphere”, Proc. 21st Intern. Cosmic Ray Conf., Adelaide, 7, 128–131 (1990).

    Google Scholar 

  • Dergachev V.A. and V.F. Chistjakov “210 and 2400 year solar cycles and fluctuations of the climate”, In Solar Cycle, Ioffe Phys.-Techn. Inst., St.Petersburg, 112–130 (1993).

    Google Scholar 

  • Dergachev V.A. and V.F. Chistjakov “210 and 2400 year solar cycles and fluctuations of the climate”, In Solar Cycle, St.Petersburg, Ioffe Phys.-Techn. Inst., 112–130 (1993).

    Google Scholar 

  • Dergachev V.A., G.E. Kocharov, and N. Tuichiev “Investigation of variations of Earth ’s magnetic field intensity by means of radiocarbon data”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 353–357 (1977).

    Google Scholar 

  • Dorman L.I. “Geophysical effects and properties of the various components of the cosmic radiation in the atmosphere (Rapporteur Talk)”, Proc. 11th Intern. Cosmic Ray Conf., Budapest, Volume of Invited Papers and Rapporteur Talks, 381–444 (1969).

    Google Scholar 

  • Dorman L.I. “Cosmic ray variations and radiocarbon method”, In the book Radiocarbon, Vilnus, 13–21 (1971).

    Google Scholar 

  • Dorman L.I. “On the possibility of various type cosmic ray variations investigation by data on relative content of 14C in the annual tree cycles”, In the book Dendroclimatechronology and Radiocarbon, Kaunas, 312–316 (1972).

    Google Scholar 

  • Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in 14C, 1. The local and polar coupling coefficients in the Earth ’s atmosphere”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 369–373 (1977a).

    Google Scholar 

  • Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in 14C, II. The atmospheric mixing and the planetary coupling coefficients, the magnetic and barometric coefficients”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 374–377 (1977b).

    Google Scholar 

  • Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in 14C, III. The functions of the “response” in the planetary rate of radiocarbon production including the mixing in the atmosphere”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 378–382 (1977c).

    Google Scholar 

  • Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in 14C, IV. The two-basin model of radiocarbon exchange on the Earth, estimation of the basis constants”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 383–386 (1977d).

    Google Scholar 

  • Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in 14C, V. The two-basin model and the functions of the “response” in 14C”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 387–391 (1977e).

    Google Scholar 

  • Dorman L.I. “Five-basin model of the radiocarbon dynamics on the Earth including the temporal variations in the rate of production by cosmic rays. I. Set on equations, stationary case, estimates of the basic constants”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 395–399 (19771).

    Google Scholar 

  • Dorman L.I. “Five-basin model of the radiocarbon dynamics on the Earth including the temporal variations in the rate of production by cosmic rays. II. Nonstationary solution”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 400–404 (1977g).

    Google Scholar 

  • Dorman L.I. “Peculiarities of cosmic ray research by radio-carbon method”, Proc. 6th All-Union Meeting on the Problem “Astrophysics Phenomena and Radio-Carbon” (Tbilisi, 1976), Tbilisi, METSNIEREBA, 49–96 (1978).

    Google Scholar 

  • Dorman L.I. “Methods of cosmic ray variation research by difference ionospheric and radio-carbonic coupling coefficients”, Izvestia Academy of Sciences USSR, Series Phys., 42, No. 5, 1092–1097 (1978).

    Google Scholar 

  • Dorman Lev I. “Cosmic rays and cosmogenic nuclides, 1. In space, inside bodies, and in atmospheres”, In Towards the Millennium in Astrophysics, ed. M.M. Shapiro, R. Silberberg and J.P. Wefel, World Sci. Publ. Co., Singapore, New Jersey, London, Hong Kong, 303–322 (1998a).

    Google Scholar 

  • Dorman Lev I. “Cosmic rays and cosmogenic nuclides, 2. Radiocarbon method and elements global mixing and exchange on the Earth”, In Towards the Millennium in Astrophysics, M.M. Shapiro, R. Silberberg and J.P. Wefel, World Sci. Publ. Co., Singapore, New Jersey, London. Hone Kong, 323–352 (1998b)

    Google Scholar 

  • Eddy J.A. “The Maunder Minimum”. Science, 192, 1189–1202 (1976)

    Article  ADS  Google Scholar 

  • Fields D. “Deep-ocean iron-60 as a possible signature of a nearby supernova”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4212–4212 (2001).

    ADS  Google Scholar 

  • Galli M., G. Cini Castagnoli, M.R. Attolini, et al. “400 year radiocarbon record: 11 year and more longer cycles”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 4, 280–283 (1987a).

    Google Scholar 

  • Galli M., G. Cini Castagnoli, M.R. Attolini, et al. “The 20 year cycle of solar activity in C14 and Bel() (before and during Maunder minimum)”, Proc. 20th Intern. Cosmic Ray Conf., Moscow. 4. 284–287 (1987h).

    Google Scholar 

  • Kato M., Kh.A. Arslanov, H. Kitagawa et al. “Radiocarbon abundances in tree rings from the Spoerer minimum”, Proc. 27 th Intern. Cosmic Ray Conf., 10, 4035–4038 (2001).

    ADS  Google Scholar 

  • Kitagawa H., T. Masuzawa, T. Makamura and E. Matsumoto “A batch preparation method for graphite targets with low background for AMS C-14 measurements”, Radiocarbon, 35, No. 2, 295–300 (1993).

    Google Scholar 

  • Kocharov G.E., R.Y. Metskvarishvili, and S.L. Tsereteli “High precise measurements of cosmogenic radiocarbon abundance by complex of scintillation equipments”, Proc. 19th Intern. Cosmic Ray Conf., La Jolla, 5, 410–413 (1985).

    Google Scholar 

  • Kocharov G.E., A.V. Blinov, A.N. Konstantinov, and V.A. Levchenko “Cosmogenic isotopes and geomagnetic field in the past”, Proc. 21st Intern. Cosmic Ray Conf., Adelaide, 7, 116–119 (1990a).

    Google Scholar 

  • Kocharov G.E., A.N. Konstantinov, and V.A. Levchenko “Cosmogenic 1 0Be: cosmic ray over the last 150,000 years”, Proc. 21st Intern. Cosmic Ray Conf., Adelaide, 7, 120–123 (1990b).

    Google Scholar 

  • Kocharov G.E, A.N. Konstantinov, V.A. Levchenko, E.G. Berezhko, and G.F. Krymsky “Cosmic rays near the Earth from the supernova explosion”, Proc. 22nd Intern. Cosmic Ray Conf., Dublin, 2, 388–391 (1991).

    Google Scholar 

  • Kocharov G.E., V.M. Ostryakov, A.N. Peristykh, and V.A. Vasil’ev “Radiocarbon content variations and Maunder minimum of solar activity”, Solar Physics, 159, 381–391 (1995).

    Article  ADS  Google Scholar 

  • Kolesnikov N.V., I.A. Gorshkov, and Yu.F. Biryulin “Shift of the radiocarbon concentration maximum in annual rings of trees accompanying the jamp-like increase of radiocarbon content in the stratosphere”, Proc. All-Union Meeting on Astrophysical Events and Radiocarbon, Tbilisi, 27–29 (1970).

    Google Scholar 

  • Kouts H.J. and L.C.L. Yuan “The production rate of cosmic-ray neutrons and C14”, Phys. Rev., 86, 128–129 (1952).

    Article  ADS  Google Scholar 

  • Landenburg R. “The absorption rate of cosmic-ray neutrons producing C14 in the atmosphere”, Phys. Rev., 86, 128–128 (1952).

    Article  ADS  Google Scholar 

  • Libby W.F. “Atmospheric helium three and radiocarbon from cosmic radiation”, Phys. Rev., 69, 671–672, (1946).

    Article  ADS  Google Scholar 

  • Lingenfelter R.E. “Production of carbon 14 by cosmic ray neutrons”, Rev. of Geophysics, 1, No. 1, 35–55, (1963).

    Article  ADS  Google Scholar 

  • Matsumoto M., H. Sakurai, Y. Sawaki, et al. “Measurements of time variation of cosmogenic C-14 from 2500-year-old tree rims”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4133–4136 (2001).

    ADS  Google Scholar 

  • McElhinny M.W. and W.E. Senanayake “Variations in the geomagnetic dipole. I. The past 50000 years”, J. Geomagn. and Geoelectr., 34, 39–51 (1982).

    Article  ADS  Google Scholar 

  • Masuda K., H. Furuzawa, H. Miyahara et al. “Radiocarbon Content in Japanese Cedar during the Maunder Minimum”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4143–4146 (2003).

    ADS  Google Scholar 

  • Miyahara H., K. Masuda, H. Furuzawal et al. “Variation of the Radiocarbon Content of Tree Rings during the Spoerer Minimum”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4139–4142 (2003).

    ADS  Google Scholar 

  • Montgomery C.G. and D.D. Montgomery “The intensity of neutrons of thermal energy in the atmosphere at sea level”, Phys. Rev., 56, 10–12 (1939).

    Article  ADS  Google Scholar 

  • Muraki Y., G. Kocharov, T. Nishiyama, et al. “The new Nagoya radiocarbon laboratory”, Radiocarbon, 40, 177–182 (1998).

    Google Scholar 

  • Nishimura J., M. Fujii, and T. Taira “Electron spectrum at the high energy side”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 1, 488–493 (1979).

    Google Scholar 

  • Peristykh A.N. and P.E. Damon “Modulation of atmospheric C-14 concentration by the solar wind and irradiance components of the Hale and Schwabe solar cycles”, Solar Physics, 177, No. 1–2, 343–355 (1998).

    Google Scholar 

  • Pfotzer G. “Calculation of the equilibrium amount of beta-active carbon in the atmosphere from data on cosmic neutrons”, Z. Naturforsch., 7a, 145–149 (1952).

    ADS  Google Scholar 

  • Sakurai H., K. Endo, A. Suzuki, et al. “High accurate C-14 measurement of an old tree rings in the past 2500 years”, Proc. 26th Intern. Cosmic Ray Conf., Salt-Lake City, 7, 421–424 (1999)

    Google Scholar 

  • Sakurai H., W. Kato, T. Gandou et al. “Measurements of C-14 concentration for 22 single-year tree rings of an old cedar ca. 2500 years ago”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4135–4138 (2003).

    ADS  Google Scholar 

  • Sonett C.P. and L.A. Smith “Cosmic ray anomaly and lunar Saros cycle”, Proc. 26th Intern. Cosmic Ray Conf. . Salt Leik City, 7, 448–451 (1999).

    Google Scholar 

  • Stuiver M. and B. Becker “High-precision decadal calibration of the radiocarbon time scale, AD 1950-6000 BC” Radiocarbon, 35, No. 1, 35–65 (1993).

    Google Scholar 

  • Stuiver M. and T.F. Braziunas. Braziunas “The solar component of the atmospheric 14C record”, In Secular, Solar and Geomagnetic Variations in the Last 10,000 Years (ed. F.R. Stephenson and A.W. Wolfendale), Dordrecht, Kluwer Ac. Press, 245–266 (1988).

    Google Scholar 

  • Stuiver M. and T.F. Braziunas “Atmospheric C-14 and century-scale solar oscillations”, Nature, 338, 405–408 (1989).

    Article  ADS  Google Scholar 

  • Stuiver M. and T.F. Braziunas “Sun, ocean climate and atmospheric 14CO2: an evaluation of causal relationships”, The Holocene, 3, 289–305 (1993).

    Article  Google Scholar 

  • Stuiver M. and P.J. Reimer “Extended C-14 data-base and revised Calib 3.0 C-14 AGE calibration program”, Radiocarbon, 35, No. 1, 215–230 (1993).

    Google Scholar 

  • Stuiver M., G.W. Pearson, and T. Braziunas “Radiocarbon age calibration of marine samples back to 9000 Cal Yr BP”, Radiocarbon, 28, 980–1021 (1986).

    Google Scholar 

  • Stuiver M., P.J. Reimer, and T.F. Braziunas “High-precession radiocarbon age calibration for terrestrial and marine samples”, Radiocarbon, 40, 1127–1151 (1998).

    Google Scholar 

  • Suess H.E. “Secular Variations of the Cosmic-Ray-Produced Carbon 14 in the Atmosphere and Their Interpretation”, J. Geophys. Res., 70, No. 23, 5937–5952 (1965).

    Article  ADS  Google Scholar 

  • Suess H.E. “The radiocarbon record in tree rings of the last 8000 years” Radiocarbon, 22, 200–209 (1980).

    Google Scholar 

  • Van der Plicht J., H.A.J. Meijer, B. van Geel, and H. Renssen. Renssen “PE-02: Climate Change”, Scientific Report 1995–1997, Netherlands, 1998.

    Google Scholar 

  • Wilkom H. and H. Erlenkenser “University of Kiel radiocarbon measurements, III” Radiocarbon, 10, No. 2, 328–332 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Applications of the Radiocarbon Coupling Function Method to Investigations of Planetary Mixing and Exchange Processes; Influence of H-Bomb Explosions on the Environment; Cosmic Ray Variations in the Past. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics