Cosmic Ray Influence on the Chemical Processes in the Atmosphere and Formation of Ozone Layer

  • Lev I. Dorman
Part of the Astrophysics and Space Science Library book series (ASSL, volume 303)


Zeller et al. (1986) revealed a strong correlation between nitrate fallouts and great solar proton events by measuring abundances of nitrates in Antarctic snow. It was observed that the nitrate concentration peak for solar GLE (Ground Level Events) in August 1972 was 2-3 times as much as the mean level.


Magnetic Cloud Ozone Layer Solar Energetic Particle Geomagnetic Disturbance Solar Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkin A.C.Z. “Energetic particle-induced enhancements of stratospheric nitric acid”, Geophys. Res. Lett., 21, No.10, 859–862 (1994).ADSCrossRefGoogle Scholar
  2. Attolini M., S.Cecchini, M. Galli and T. Nanni “On the persistence of the 22-y solar cycle”, Solar Phys., 125, No. 2, 389–398 (1990).ADSCrossRefGoogle Scholar
  3. Carrington R.C. “Description of a singular appearance seen on the Sun on September 1, 1859”, Mon. Not. Royal Astron. Soc., 20, 13–15 (1860).ADSGoogle Scholar
  4. Crutzen P.J., I.S.A. Isaksen, and G.C. Reid “Solar proton events: stratospheric sources of nitric oxide”, Science, 189, No.4201, 457–459 (1975).ADSCrossRefGoogle Scholar
  5. Dorman I.V., L.I. Dorman and D. Venkatesan “Solar cosmic ray event frequency distribution in dependence of fluence and of solar activity level”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 4, 79–82 (1993).Google Scholar
  6. Dorman L.I. and L.A. Pustil’nik “Solar cosmic ray events: statistical characteristics for the diagnostic of acceleration, excaping and propagation processes”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 86–89 (1995).Google Scholar
  7. Dorman L.I. and L.A. Pustil’nik “Statistical characteristics of FEP events and their connection with acceleration, escaping and propagation mechanisms”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 6, 407–410 (1999).Google Scholar
  8. Dreschhoff G.A.M. and E.J. Zeller “Evidence of individual solar proton events in Antarctic snow”, Solar Physics, 127, 337–346 (1990).ADSCrossRefGoogle Scholar
  9. Dreschhoff G.A.M. and E.J. Zeller “415-year Greenland ice core record of solar proton events dated by volcanic eruptive events”, TER-QUA Symposium Series, 2, Inst. Tertiary-Quaternary Studies, 1–24 (1994).Google Scholar
  10. Dreschhoff G.A.M. and E.J. Zeller “The solar signal in a 415-year nitrate record from a polar ice core”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1196–1199 (1995).Google Scholar
  11. Gladysheva O.G. and G.E. Kocharov “Solar protons from August 1972 flare and nitrate abundance in Antarctic snow”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1126–1128 (1995).Google Scholar
  12. Gladysheva O.G., I. Iwasaka, G.E. Kocharov, and Y. Muraki “Unique possibility to obtain upper limit of total energy induced by solar flare protons”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1129–1132 (1995).Google Scholar
  13. Heath D.F., A.J. Krüger, and P.J. Crutzen “Solar proton event: influence on stratospheric ozone”, Science, 197, 886–889 (1977).ADSCrossRefGoogle Scholar
  14. Jackman C.H., A.R. Douglass, R.B. Rood, R.D. McPeters, and P.E. Meade “Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model”, J. Geophys. Res., 95, No. D6, 7417–7428 (1990).ADSCrossRefGoogle Scholar
  15. Jackman C.H., E.L. Fleming, and F.M. Vitt “Influence of extremely large solar proton events in a changing stratosphere”, J. Geoph. Res., 105, No.D6, 11659–11670 (2000).ADSCrossRefGoogle Scholar
  16. Jackman C.H., R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, and J.M. Russell “Northern Hemisphere atmospheric effects due to the July 2000 solar proton event”, Geophys. Res. Lett., 28, No. 15, 2883–2886 (2001).ADSCrossRefGoogle Scholar
  17. Kinnersley J.S. “The climatology of the stratospheric ’THIN AIR ’ model.” Quarterly Journal of the Royal Meteorological Society, 122, No.529, 219–252 (1996).ADSGoogle Scholar
  18. Krivsky L. and K. Peiml, Publ. 75, Ondrejov, Czech Republic (1988)Google Scholar
  19. Marcucci M.F., S. Orsini, M. Candidi, and M. Storini “On a possible relationship between atmospheric ozone dynamics and global auroral activity”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1156–1159 (1995).Google Scholar
  20. Martin I.M., T. Toroshelidze, W.E. Alves, et al. “Stratospheric cosmic ray and ozone variations during last three solar cycles”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 453–456 (1997).Google Scholar
  21. McCracken K.G., G.A.M. Dreschhoff, D.F. Smart, and M.A. Shea “The Gleissberg periodicity in large fluence solar proton events”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 8, 3205–3208 (2001a).ADSGoogle Scholar
  22. McCracken K.G., D.F. Smart, M.A. Shea, and G.A.M. Dreschhoff “400 years of large fluence solar proton events”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 8, 3209–3212 (2001b).ADSGoogle Scholar
  23. McCracken K.G., G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, and M.A. Shea “Solar cosmic ray events for the period 1561–1994, 1. Identification in polar ice, 1561–1950”, J. Geophys. Res., 106, No. A10, 21585–21598 (2001c).ADSCrossRefGoogle Scholar
  24. McCracken K.G., G.A.M. Dreschhoff, D.F. Smart, and M.A. Shea “Solar cosmic ray events for the period 1561–1994, 2. The Gleissberg periodicity”, J. Geonhvs. Res. 106. No. A10. 21599–21609 (2001d)ADSCrossRefGoogle Scholar
  25. Nachkebia N., M. Despotashvili, and J. Kharchilava “Interplanetary Magnetic Field Disturbances Affect on the Ozone Profiles”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4237–4240 (2003).Google Scholar
  26. Nevanlinna H. and E. Kataja “An extension of the geomagnetic activity index series AA for 2 solar cycles (1844–1898)”, Geophys. Res. Lett., 20, No.23, 2703–2706 (1993).ADSCrossRefGoogle Scholar
  27. Nevanlinna H., A. Ketola, L. Hakkinen, A. Viljanen, and K. Ivory “Geomagnetic activity during solar cycle 9 (1844–1856)”, Geophys. Res. Lett., 20, No. 8, 743–746 (1993).ADSCrossRefGoogle Scholar
  28. Quack M., M.B. Kallenrode, König M., et al. “Ground level events and consequences for stratospheric chemistry”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4023–4026 (2001).ADSGoogle Scholar
  29. Porter H.S., C.H. Lackman, and A.E.S. Green “Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air”, J. Chem. Phys., 65. No. 1. 154–167 (1976).ADSCrossRefGoogle Scholar
  30. Russell C.T., and R.L. McPherro “Semiannual variation of geomagnetic activity”, J. Geophys. Res., 78, No. 1, 92–108 (1973).ADSCrossRefGoogle Scholar
  31. Shea M.A., D.F. Smart, G.A.M. Dreschhoff, and K.G. McCracken “The Seasonal Dependency of the NO(Y) Impulsive Precipitation Events in Arctic Polar Ice”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4225–4228 (2003).Google Scholar
  32. Smart D.F. and M.A. Shea “A comparison of the magnitude of the 29 Sept. 1989 high energy event with solar cycle 17, 18 and 19 events”, Proc. 22th Intern. Cosmic Ray Conf., Dublin, 3, 101–104 (1991).Google Scholar
  33. Solomon S., D.W. Rush, J.-C. Goard, G.O Reid, and P.J. Crutzen “The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere, 2. Odd hydrogen”, Planet. Space Sci., 29, No. 8, 885–892 (1981).ADSCrossRefGoogle Scholar
  34. Swinson D.B. and M.A. Shea “The September 29, 1989 ground level event observd at high rigidity”, Geophys. Res. Letters, 17, No. 8, 1073–1075 (1990).ADSCrossRefGoogle Scholar
  35. Vitt F.M., T.P. Armstrong, T.E. Cravens, G.A.M. Dreschhoff, C.H. Jackman, and C.M. Laird “Computed contributions to odd nitrogen concentrations in the Earth ’s polar middle atmosphere by energetic charged particles”, J. Atm. Solar-Terr. Phys., 62, 669–683 (2000).ADSCrossRefGoogle Scholar
  36. Zeller E.J. and G.A.M. Dreschhoff “Anomalues nitrate concentrations in polar ice — do they result from solar particle injections into the polar atmosphere?”, Geophys. Res. Lett. 22 (18) 2521–2524 (1995)ADSCrossRefGoogle Scholar
  37. Zeller E.J., G.A.M. Dreschhoff, and C.M. Laird “Nitrate flux on the Ross Ice Shelf, Antarctica and its relation to solar cosmic rays”, Geophys. Res. Lett., 13, 1264–1267 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lev I. Dorman
    • 1
    • 2
  1. 1.Israel Cosmic Ray Center, Space Weather Center, and Emilio Segrè ObservatoryTel Aviv University, Israel Space Agency, and TechnionQazrinIsrael
  2. 2.Cosmic Ray Department of IZMIRANRussian Academy of ScienceTroitskRussia

Personalised recommendations