Air Ionization by CR, Influence on the Ionosphere and Radio Wave Propagation

  • Lev I. Dorman
Part of the Astrophysics and Space Science Library book series (ASSL, volume 303)


The first observations of CR influence on the ionosphere and radio wave propagation were made during event of February 23, 1956 — the biggest Ground Level Event (GLE), observed in the last approximately 80 years. Let us consider some important results obtained in connection with this GLE.


Solar Energetic Particle Ionization Rate Solar Energetic Particle Event Atmospheric Depth Virtual Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams G.W. and A.J. Masley “Production rates and electron densities in the lower ionosphere due to solar cosmic rays”, J. Atmosph. Terr. Phys., 77, No 3, 289–298 (1965).ADSCrossRefGoogle Scholar
  2. Ahluwalia H.S. and L.I. Dorman “Transverse cosmic ray gradients in the heliosphere and the solar diurnal anisotropy”, J. Geophys. Res., 102, No. A8, 17433–17443 (1997).ADSCrossRefGoogle Scholar
  3. Bailey D.K. “Disturbances in the lower ionosphere observed at VHE following the solar flare of 23 February 1956, with particular reference to auroralzone absorption”, J. Geophys. Res., 62, 431–463 (1957).ADSCrossRefGoogle Scholar
  4. Bailey D.K. “Abnormal ionization in the lower ionosphere associated with cosmic ray flux enhancements”, Proc. IRE, 47, No. 2, 255–256 (1959).CrossRefGoogle Scholar
  5. Bates D.R. “Recombination of small ions in the troposphere and lower stratosphere”, Planet. Space Sci., 30, No. 12, 1275–1282 (1982).ADSCrossRefGoogle Scholar
  6. Bazilevskaya G.A. and A.K. Svirzhevskaya “On the stratospheric measurements of cosmic rays”, Space Sci. Rev., 85, No. 3–4, 431–521 (1998).ADSCrossRefGoogle Scholar
  7. Bazilevskaya G.A., M.B. Krainev, and V.S. Makhmutov “Effects of cosmic rays on the Earth ’s environment”, J. Atmosph. Solar-Terr. Phys., 62, No. 17–18, 1577–1586 (2000).ADSCrossRefGoogle Scholar
  8. Belrose J.S., M.H. Defenport, and R. Weekes “Some unusual radio observations made on 23 February 1956”, J. Atmosph. Terr. Phys., 8, No 4–5, 281–286 (1956).CrossRefGoogle Scholar
  9. Clem J.M. and L.I. Dorman “Neutron monitor response functions”, Space Science Rev., 93, 335–359 (2000).ADSCrossRefGoogle Scholar
  10. Cooper J.F., T.G. Guzik, J.P. Wefel, K.R. Pyle, and I.G. Richardson “Polar cap intensity structure during the 22 July 1982 flare: correlation to interplanetary fluxes and anisotropies”. Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1133–1136 (1995).Google Scholar
  11. Davis L.R. and K.W. Ogilvie “Rocket observations of solar protons during the November 1960 events”, J. Geophys. Res., 67, No. 5, 1711–1716 (1962)ADSCrossRefGoogle Scholar
  12. Dorman L.I. “Analytical approach to the problem of the rate of ion production by cosmic rays and precipitating particles in the low-energy range”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 411–416 (1977a).Google Scholar
  13. Dorman L.I. “The ionospheric coupling coefficients and the spectrographical method for studying the extraterrestrial cosmic ray variations and the changes in the geomagnetic cut-off rigidities on the basis of the data of the ionospheric and riometric observations”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 405–410 (1977b).Google Scholar
  14. Dorman L.I. “Methods of cosmic ray variation research by difference ionospheric and radio-carbonic coupling coefficients”, Izvestia Academy of Sciences USSR, Series Phys., 42, No. 5, 1092–1097 (1978).Google Scholar
  15. Dorman L.I. “Cosmic ray long-term variation: even-odd cycle effect, role of drifts, and the onset of cycle 23”, Adv. Space Res., 27, No. 3, 601–606 (2001).ADSCrossRefGoogle Scholar
  16. Dorman I.V. and Dorman L.I. “Analytical approach to direct and inverse problems in the problem of cosmic ray influence on the lower ionosphere”, Izvestia Academy of Sciences USSR, Series Phys., 37, No. 6, 1327–1331 (1973a).Google Scholar
  17. Dorman I.V. and Dorman L.I. “Analytical solution to the direct and inverse problems for the solar cosmic ray effect on lower ionosphere”, Proc. of 13th Intern. Cosmic Ray Conf., Denver, Vol. 2, pp. 1108–1115 (1973b).ADSGoogle Scholar
  18. Dorman L.I., I.V. Dorman, N. Iucci, M. Parisi, and G. Villoresi “Hysteresis between solar activity and cosmic rays during cycle 22: the role of drifts, and the modulation region”, Adv. Space Res., 27, No. 3, 589–594 (2001a).ADSCrossRefGoogle Scholar
  19. Dorman L.I., N. Iucci, and G. Villoresi “Time lag between cosmic rays and solar activity; solar minimum of 1994–1996 and residual modulation”, Adv. Space Res., 27, No. 3, 595–600 (2001b).ADSCrossRefGoogle Scholar
  20. Dorman L.I. and I.D Kozin “Determination of the variations in the integral energy spectrum of cosmic rays on the basis of radio wave propagation data”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 434–438 (1977).Google Scholar
  21. Dorman L.I. and T.M. Krupitskaya “On the possibility of determination of solar cosmic ray energy spectrum and geomagnetic cut-off rigidity by ionospheric data”, Geomagnetism and Aeronomy, 12, No. 2, 180–183 (1972).Google Scholar
  22. Dorman L.I. and Krupitskaya T.M., 1975. “Calculations of expected ratio of solar cosmic ray ion generation speeds on different altitudes”, Cosmic Rays (Moscow, NAUKA), Vol. 15, pp. 30–33.Google Scholar
  23. Dorman L.I., T.M. Krupitskaya, and M.I. Tyasto “Influence of cut-off rigidity changes on the speed of electron generation by cosmic rays in the atmosphere”, Cosmic Rays (Moscow, NAUKA), Vol. 13, 98–102 (1972).Google Scholar
  24. Dorman L.I., Sergeev A.V., Luzov A.A., Matyukhin Yu.G., Mamrukova V.P. and Yanchukovsky A.L. “Spectrographical method of cosmic ray intensity variations”, Izvestia Academy of Sciences of USSR, Series Phys., 32, No. 11, 1896–1903 (1968).Google Scholar
  25. Ellison M.A. and J.H. Reid “A longwave anomaly associated with the arrival of cosmic ray particles of solar origin on 23 February 1956”, J. Atmosph. Terr. Phys., 8, No 4–5, 290–293 (1958).Google Scholar
  26. Elsasser W., E.P. Nay, and J.R. Winckler “Cosmicray intensity and geomagnetism”, Nature, 178, 1226–1227 (1956).ADSCrossRefGoogle Scholar
  27. Ermakov V.I., G.A. Bazilevskaya, P.E. Pokrevsky, and Yu. I. Stozhkov “Cosmic rays and ion production in the atmosphere”. Proc. 25th Intern. Cosmic Ray Conf., Durbin, 7, 317–320 (1997a).Google Scholar
  28. Ermakov V.I., G.A. Bazilevskaya, P.E. Pokrevsky, and Yu. I. Stozhkov “Ion balance equation in the atmosphere”, J. Geophys. Res., 102, No. D19, 23413–23419 (1997b).ADSCrossRefGoogle Scholar
  29. Ermakov V.I., G.A. Kokin, A.V. Komotskov, and M.G. Sorokin “Results of measurements of the concentration of negative ions in the polar stratosphere”, Geomagnetism and Aeronomia, 32, No. 3, 47–54 (1992).ADSGoogle Scholar
  30. Ermakov V.I. and A.V. Komotskov “Charged particle measurements in the equatorial, middle, and polar latitudes”, Proc. Central Aerological Observatory (Trudy ZAO), Moscow, Gidrometizdat, 179, 73–81 (1992).Google Scholar
  31. Forbush S.E. and B.F. Burke “Absorption of cosmic radio noise at 22.2 MHz following solar flare on February 23, 1956”, J. Geophys. Res., 61, No. 3, 573–575 (1956).ADSCrossRefGoogle Scholar
  32. Heaps M.G. “Parametrization of the cosmic ray ionpair production rate above 18 km”, Planet. Space Sci., 26, No. 6, 513–517 (1978).ADSCrossRefGoogle Scholar
  33. Heck D., J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw “CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers”, Forschungszentrum Karlsruhe, FZKA 6019 (1998).Google Scholar
  34. Hensen A. and J.C.H. Van Der Hage “Parametrization of cosmic radiation at sea level”, J. Geophys. Res., 99, No. D5, 10693–10695 (1994).ADSCrossRefGoogle Scholar
  35. Kallenrode M.B. and E.W. Cliver “Roggue SEP events: Observational aspects”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 8, 3314–3317 (2001a).ADSGoogle Scholar
  36. Kallenrode M.B. and E.W. Cliver “Roggue SEP events: Modelling”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 8, 3318–3321 (2001b).ADSGoogle Scholar
  37. Lied F. “Ionosperic absorption observed on the 23rd February 1956 at Kjeller and Tromso”, J. Atmosph. Terr. Phys., 10, No. 1, 48–48 (1957).CrossRefGoogle Scholar
  38. Little C.G. and H. Leinbach “Some measurements of high-latitude ionospheric absorption using extraterrestrial radio waves”, Proc. IRE, 46, 334–348 (1958).CrossRefGoogle Scholar
  39. Little C.G. and H. Leinbach “The riometer — a device for the continuous measurements of ionospheric absorption”, Proc. IRE, 47, 315–320 (1959).CrossRefGoogle Scholar
  40. Marsh N. and H. Svensmark “Solar Influence on Earth ’s Climate”, Space Sci. Rev., 107, No. 1–2, 317–325 (2003).ADSCrossRefGoogle Scholar
  41. Minnes C.M., G.H. Bazzard, and H.C. Bevan “Ionospheric changes associated with the solar event of 23 February 1956”, J. Atmosph. Terr. Phys., 9. 233–234 (1957).CrossRefGoogle Scholar
  42. Neher H.V. “Cosmic ray knee in 1958”, J. Geophys. Res., 66, No. 12, 4007–4012 (1961).ADSCrossRefGoogle Scholar
  43. Neher H.V. “Cosmic ray particles that changed from 1954 to 1965”, J. Geophys. Res., 72, No. 5, 1527–1539 (1967).ADSCrossRefGoogle Scholar
  44. Neher H.V. “Cosmic rays at high latitudes and altitudes covering four solar maxima”, J. Geophys. Res., 76, No. 7, 1637–1651 (1971).ADSCrossRefGoogle Scholar
  45. Pierce J.A. “VIF phase shifts associated with the disturbance of February 23, 1956”, J. Geophys. Res., 61, 475–483, 1956.ADSCrossRefGoogle Scholar
  46. Porter H.S., C.H. Jackman, and A.E.S. Green “Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air”, J. Chem. Phys., 65, No. 1, 154–167 (1976).ADSCrossRefGoogle Scholar
  47. Quack M., M.B. Kallenrode, König M., et al. “Ground level events and consequences for stratospheric chemistry”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4023–4026 (2001).ADSGoogle Scholar
  48. Reid G.C. “A study of enhanced ionization produced by solar protons during a polar cap absorption event”, J. Geophys. Res., 66, No. 12, 4071–4085 (1961).ADSCrossRefGoogle Scholar
  49. Rosen J.M. and D.J. Hofmann “Balloonborne measurements of electrical conductivity, mobility, and the recombination coefficient”, J. Geophys. Res., 86, No. C8, 7406–7410 (1981).ADSCrossRefGoogle Scholar
  50. Shapley A.H. and R.W. Knecht “Ionospheric effect of the great solar-cosmic ray event of February 23, 1956”, Report on URSI-IRE Meeting, Washington, D.C. (1957).Google Scholar
  51. Usoskin I.G., K. Alanko, K. Mursula, and G.A. Kovaltsov “Heliospheric modulation strength during the neutron monitor era”, Solar Phys., 207, No. 2, 389–399 (2002a).ADSCrossRefGoogle Scholar
  52. Usoskin I.G., K. Mursula, S. Solanki, M. Schüssler, and G.A. Kovaltsov “Physical reconstruction of cosmic ray intensity since 1610”, J. Geophys. Res., 107, No. A11, SS 13–1, doi:10.1029/2002JA009343 (2002b).CrossRefGoogle Scholar
  53. Usoskin I.G., O.G. Gladysheva, and G.A. Kovaltsov “Cosmic ray induced ionization in the atmosphere: spatial and temporal changes”, J. Atmosph. Solar-Terr. Phys., in press (2004).Google Scholar
  54. Yu, F. “Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate”, J. Geophys. Res., 107, No. A7, SIA 8-1, doi:10.1029/2001JA000248 (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lev I. Dorman
    • 1
    • 2
  1. 1.Israel Cosmic Ray Center, Space Weather Center, and Emilio Segrè ObservatoryTel Aviv University, Israel Space Agency, and TechnionQazrinIsrael
  2. 2.Cosmic Ray Department of IZMIRANRussian Academy of ScienceTroitskRussia

Personalised recommendations