# Nuclear Reactions of Cosmic Rays with Ground, Water, and Air Atoms; Production of Cosmogenic Nuclides

## Abstract

In any astrophysical object containing CR (of local and/or external origin) and matter a lot of stable and unstable cosmogenic isotopes will be continuously produced. This production is caused by nuclear reactions with matter of primary protons and nuclei as well as of secondary CR nuclear active particles. It takes place **in space** where secondary energetic particles generated in interactions of primary CR particles with space matter become a part of CR with changing elemental and isotopic contents. On the other hand the space matter also is changed by these nuclear interactions with generation of cosmogenic stable and unstable nuclides. The abundance and composition of cosmogenic nuclides will be determined by the variations of CR intensity (which lead to the time variation of cosmogenic generation rate) by the amount and composition of matter, by the decay time of unstable cosmogenic nuclides, and by exchange processes in the space (this problem will be considered in details in Dorman, M2005).

## Keywords

Solar Cycle Sunspot Number Solar Energetic Particle Geomagnetic Latitude Solar Energetic Particle Event## Preview

Unable to display preview. Download preview PDF.

## References

- Alanko K., I.G. Usoskin, K. Mursula, and G.A. Kovaltsov “Effective energy of neutron monitors”,
*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 3901–3904 (2003).ADSGoogle Scholar - Arnold J.R, M. Honda and D. Lal “Record of Cosmic-Ray Intensity in the Meteorites”,
*J. Geophys. Res.*,**66**, No.10, 3519–3531 (1961).CrossRefADSGoogle Scholar - Bard E., G.M. Raisbeck, F. Yiou, and J. Jouzeel “Solar modulation of cosmogenic nuclide production over the last millennium: comparison between
^{14}C and^{10}Be records”,*Earth and Planetary Science Letters*,**150**, 453–462 (1997).CrossRefADSGoogle Scholar - Beer J., A. Blinov, G. Bonani, et al. “Use of
^{10}Be in polar ice to trace the 11-year cycle of solar activity”,*Nature*,**347**, 164–167 (1990).CrossRefADSGoogle Scholar - Beer J., S. Tobias, and N. Weiss “An active sun throughout the Maunder Minimum”,
*Solar Phys.*,**181**, No. 1, 237–249 (1998).CrossRefADSGoogle Scholar - Beer J., M.V. Vonmoos, R. Muscheler, K.G. McCracken, and W. Mende “Heliospheric Modulation over the past 10,000 Years as derived from Cosmogenic Nuclides”,
*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 4147–4150 (2003).ADSGoogle Scholar - Begeman F., J. Geiss, and D.C. Hess “Radiation age of a meteorite from cosmic-ray produced He
^{3}and H^{3}”,*Phys. Rev.*,**107**, No. 2, 540–542 (1957).CrossRefADSGoogle Scholar - Biswas M.M., C. Mayer-Böricke, and W. Gentner “Cosmic ray produced
^{22}Na and^{26}Al activities in chondrites”, in*Earth Science and Meteoritics*, North-Holland Publ. Co., Amsterdam, 207–218 (1963).Google Scholar - Bleichrodt J.F. “Mean tropospheric residence time of cosmic-ray-produced Beryllium-7 at north temperate latitudes”,
*J. Geophys. Res.*,**83**, No. NC6, 3058–3062 (1978).CrossRefADSGoogle Scholar - Blinov A. “The dependence of cosmogenic isotope production rate on solar activity and geomagnetic field variations”, in
*Secular Solar and Geomagnetic Variations in the last 10, 000 years*, edited by F.R. Stephenson and A.W. Wolfendale, Kluwer Acad., Norwell, Mass., 329–340 (1988).CrossRefGoogle Scholar - Bodemann R., H.J. Lange, I. Leya, et al. “Production of residual nuclei by proton-induced reactions on C, N, O, Mg, Al and Si”,
*Nucl. Instr. Meth.*,**B82**, No. 1, 9–31 (1993).ADSGoogle Scholar - Brown E.T., T.W. Trull, P. Jean-Baptiste et al. “Determinaton of cosmogenic production rates of
^{0}Be,^{3}He, and^{3}H in water”,*Nuclear Instruments and Methods in Nuclear Research*,**B172**, 873–883 (2000).CrossRefADSGoogle Scholar - Craig H.D. and D. Lal “The production rate of natural tritium”,
*Tellus*,**13**, 85–105 (1961).CrossRefADSGoogle Scholar - Dibb J.E. “Atmospheric deposition of Beryllium-7 in the Chesapeake bay region”,
*J. Geophys. Res.*,**94**, No. D2, 2262–2265 (1989).CrossRefADSGoogle Scholar - Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in
^{14}C, I. The local and polar coupling coefficients in the Earth ’s atmosphere”,*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 369–373 (1977a).Google Scholar - Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in
^{4}C, II. The atmospheric mixing and the planetary coupling coefficients, the magnetic and barometric coefficients”,*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 374–377 (1977b).Google Scholar - Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in
^{14}C, III. The functions of the “response” in the planetary rate of radiocarbon production including the mixing in the atmosphere”,*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 378–382 (1977c).Google Scholar - Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in C, IV. The two-basin model of radiocarbon exchange on the Earth, estimation of the basis constants”,
*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 383–386 (1977d).Google Scholar - Dorman L.I. “Radiocarbon coupling coefficients and the functions of cosmic ray “response” in
^{14}C, V. The two-basin model and the functions of the “response” in^{14}C”,*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 387–391 (1977e).Google Scholar - Dorman L.I. “Five-basin model of the radiocarbon dynamics on the Earth including the temporal variations in the rate of production by cosmic rays. 1. Set on equations, stationary case, estimates of the basic constants”,
*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 395–399 (1977f).Google Scholar - Dorman L.I. “Five-basin model of the radiocarbon dynamics on the Earth including the temporal variations in the rate of production by cosmic rays. II. Nonstationary solution”,
*Proc. 15th Intern. Cosmic Ray Conf.*, Plovdiv,**4**, 400–404 (1977g).Google Scholar - Dorman L.I. “Peculiarities of cosmic ray research by radio-carbon method”,
*Proc. 6th All-Union Meeting on the Problem “Astrophysics Phenomena and Radio-Carbon”*(Tbilisi, 1976), Tbilisi, METSNIEREBA, 49–96 (1978).Google Scholar - Dorman L.I. “Cosmic Ray Nonlinear Processes in Gamma-Ray Sources”,
*Astronomy and Astrophysics*, Suppl. Ser.,**120**, No. 4, 427–435 (1996).Google Scholar - Dorman L. I. “Cosmic rays and cosmogenic nuclides, 1. In space, inside bodies, in atmospheres”, In
*Towards the Millennium in Astrophysics*, ed. M.M. Shapiro, R. Silberberg and J.P. Wefel, World Sci. Publ. Co., Singapore, New Jersey, London, Hong Kong, 303–322 (1998a).Google Scholar - Dorman L. I. “Cosmic rays and cosmogenic nuclides, 2. Radiocarbon method and elements global mixing and exchange on the Earth”, In
*Towards the Millennium in Astrophysics*, M.M. Shapiro, R. Silberberg and J.P. Wefel, World Sci. Publ. Co., Singapore, New Jersey, London, Hong Kong, 323–352 (1998b).Google Scholar - Dunai T.J. “Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation”,
*Earth Planet. Sci. Lett.*,**176**, 157–169 (2000).CrossRefADSGoogle Scholar - Ebeoglu D.B., K.M. Wainio, K. More, and O.L. Tiffany “Monte Carlo calculations of radionuclide production in iron targets bombarded with 400-MeV protons”,
*J. Geophys. Res.*,**71**, No. 5, 1445–1451 (1966).CrossRefADSGoogle Scholar - Eberhardt P. and J. Geiss “Meteorite classes and radiation ages” In
*Isotopic and Cosmic Chemistry*, NorthHolland Publ.Co., Amsterdam, 452–470 (1963).Google Scholar - Eberhardt P., J. Geiss, and H. Lutz “Neutrons in meteorites”, in
*Earth Science and Meteoritics*, North-Holland Publ. Co., Amsterdam, 143–168 (1963).Google Scholar - Eberhardt P., O. Eugster, and J. Geiss “Radiation Ages of Aubrites”,
*J. Geophys. Res.*,**70**, No. 18, 4427–4434 (1965).CrossRefADSGoogle Scholar - Feely H.W., R.J. Larsen, and C.G. Sanderson “Factors that cause seasonal variations in Beryllium-7 concentrations in surface air”,
*J. Environ. Radioactivity*,**9**, No. 3, 223–249 (1989).CrossRefGoogle Scholar - Hess W.N., E.H. Canfield, and R.E. Lingenfelter “Cosmic ray demography”,
*J. Geophys. Res.***66**, 665–677 (1961).CrossRefADSGoogle Scholar - Haigh J.D. “The impact of solar variability on climate”,
*Science*,**272**, No. 5264, 981–984 (1996).CrossRefADSGoogle Scholar - Honda M. and J.R. Arnold “Effects of cosmic rays on meteorites”,
*Science*,**143**, No. 3603, 203–212 (1964).CrossRefADSGoogle Scholar - Hoyt D.V. and K.H. Schatten “Group Sunspot Numbers: A new solar activity reconstruction”,
*Solar Phys.*,**181**, No. 2, 491–512 (1998).CrossRefADSGoogle Scholar - Kruger S.T. and D. Heymann “Cosmic-ray-produced Hydrogen 3 and Helium 3 in Stony Meteorites”,
*J. Geophys. Res.*,**73**, No.14, 4784–4787 (1968).CrossRefADSGoogle Scholar - Lal D. “
^{10}Be in polar ice data reflect changes in cosmic ray flux or polar meteorology”,*Geophys. Res. Lettrs*,**14**, No. 8, 785–788 (1987).CrossRefADSGoogle Scholar - Lal D. “Theoretically expected variations in the terrestrial cosmic ray production of isotopes”, in
*SolarTerrestrial Relationships*, edited by G.C. Castagnoli and D. Lal, Soc. Italiana di Fisica-Bologna-Italy, Bologna, 216–233 (1988).Google Scholar - Lal D. “Cosmic ray labeling of erosion surfaces-In situ nuclide production rates and erosion models”,
*Earth Planet. Sci. Lett.*,**104**, 424–439 (1991).CrossRefADSGoogle Scholar - Lal, D. and B. Peters “Cosmic ray produced isotopes and their application to problems in geophysics”, In
*Progress in Elementary Particle and Cosmic Ray Physics*(eds. J.G. Wilson and S.A. Wouthysen), NorthHollandPubl. Co., Amsterdam,**6**, 1–74 (1962).Google Scholar - Lal D. and B. Peters “Cosmic ray produced radioactivity on the Earth”, in
*Handbuch der Physik*,**XLVI/2**, 551–612, Springer Verlag, New York (1967).Google Scholar - Lal D. and V.S. Venkavaradan “Activation of cosmic dust by cosmic-ray particles”,
*Earth and Planetary Science Letters*,**3**, No. 4, 299–310 (1968).ADSGoogle Scholar - Lal D., R.S. Rajan, and V.S. Venkatavaradan “Nuclear effects of solar and galactic cosmic ray particles in near-surface regions of meteorite”,
*Geochim. Cosmochim. Acta*,**31**, No. 10, 1859–1869 (1967).CrossRefADSGoogle Scholar - Lavrukhina A.K. and T.A. Ibraev “Determination of preatmospheric size of meteorites on the basis of the effects of nuclear reactions induced by cosmic rays”,
*Izvestia Ac. of Sci. of USSR*, Ser. Phys.,**30**, No. 11, 1794–1798 (1966).Google Scholar - Light E.S., M. Merker, H.J. Vershell, R.B. Mendel, and S.A. Korff “Time-dependent worldwide distribution of atmospheric neutrons and of their products, 2. Calculations”,
*J. Geophys. Res.***78**. 2741–2762 (1973).CrossRefADSGoogle Scholar - Lingenfelter R.E. “Production of carbon-14 by cosmic ray neutrons”,
*Rev. Geophys. J.*,**1**, No. 1. 35–55 (1963).CrossRefADSGoogle Scholar - Martell E.A. and H.E. Moore “Tropospheric aerosol residence times: a critical review”,
*J. Rech. Atmos.*,**8**, No. 3–4, 903–910 (1974).Google Scholar - Masarik J. and J. Beer “Monte Carlo simulation of particle fluxes and cosmogenic nuclide production in Earth ’s atmosphere”,
*Proc. 25th Intern. Cosmic Ray Conf.*, Durbin,**2**, 461–464 (1997).Google Scholar - Masarik J. and J. Beer “Simulation of particle fluxes and cosmogenic nuclide production in the Earth ’s atmosphere”,
*J. Geophys. Res.*,**104**, No. D10, 12099–12111 (1999).CrossRefADSGoogle Scholar - Masarik J. and R.C. Ready “Terrestrial cosmogenic-nuclide production systematic calculated from numerical simulations”,
*Earth Planet. Sci. Lett.*,**136**, 381–395 (1995).CrossRefADSGoogle Scholar - Matsunami T. and K. Megumi “Variation of
^{7}Be concentrations in surface air and in deposition with the solar activity”,*Radioisotopes*,**43**, 334–340 (1994).CrossRefGoogle Scholar - McCracken K.G. “Variations in the production of
^{10}Be due to the 11 year modulation of the cosmic radiation, and variations in the vector geomagnetic dipole”,*Proc. 27th Intern. Cosmic Ray Conf,.*Hamburg,**10**, 4129–4132 (2001).ADSGoogle Scholar - McCracken K.G. “The Accuracy of Cosmogenic l0Be as a Quantitative Measurement of the GCR”,
*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 4127–4130 (2003).ADSGoogle Scholar - McCracken K.G., J. Beer, and F.B. McDonald “Properties of the Long Term Heliospheric Modulation-Tests to be met by Modulation Theory”,
*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 4123–4126 (2003).ADSGoogle Scholar - McCracken K.G., D.F. Smart, M.A. Shea, and G.A.M. Dreschhoff “400 years of large fluence solar proton events”,
*Proc. 27th Intern. Cosmic Ray Conf.*, Hamburg,**8**, 3209–3212 (2001).ADSGoogle Scholar - Nagashima K., S. Sakakibara, K. Murakami, et al. “Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys”,
*Nuovo Cimento*,**C12**, No. 2, 173–209 (1989).ADSGoogle Scholar - Newkirk L.L. “Calculation of low-energy neutron flux in the atmosphere by the Sn method”,
*J. Geophys. Res.***68**, 1825–1839 (1963).CrossRefADSGoogle Scholar - Nishiizumi K., R.C. Finkel, J. Klein, and C.P. Kohl “Cosmogenic production of
^{7}Be and^{1 0}Be in water targets”,*J. Geophys. Res.***101**, 22225–22232 (1996).CrossRefADSGoogle Scholar - O’Brien K. “Secular variations in the production of cosmogenic isotopes in the Earth ’s atmosphere”,
*J. Geophys. Res.***84**, 423–431 (1979).CrossRefADSGoogle Scholar - Oeschger H., J. Houtermann, H. Loosli, and M. Wahlen. “The constancy of cosmic radiation from isotope studies in meteorites and on the Earth”, in
*Radiocarbon Variations and Absolute Chronology*, edited by I.U. Olsen, John Wiley, New York (1969).Google Scholar - Pomerantz M.A. and S.P. Agrawal “Spatial distribution of cosmic-ray intensity and geomagnetic theory”,
*Philos. Mag.*,**7**, No. 81, 1503–1511 (1962).CrossRefADSGoogle Scholar - Raisbeck G.M. and F. Yiou “Influence of solar activity on cosmogenic 7Be in the atmosphere”,
*Proc. 16th Intern. Cosmic Ray Conf.*, Kyoto,**2**, 285–287 (1979).Google Scholar - Rehfeld S. and M. Heimann “Three dimensional atmospheric transport simulation of the radioactive tracers
^{2 0}Pb, 7Be, 1^{0}Be, and 90Sr”,*J. Geophys. Res.*,**100**, No. D12, 26141–26161 (1995).CrossRefADSGoogle Scholar - Reiter E.R. “Stratospheric-tropospheric exchange processes”,
*Rev. Geophys. Space Phys.*,**13**, 459–474 (1975).CrossRefADSGoogle Scholar - Rowe M.W., D.D. Bogard, and P.K. Kuroda “Mass yield spectrum of cosmic-ray-produced xenon”,
*J. Geophys. Res.*, 71, No. 19, 4679–4684 (1966).CrossRefADSGoogle Scholar - Sakurai H., T. Aoki, T. Gandou, W. Kato, S. Gunji, and F. Tokanai “Daily Variation of Cosmogenic Nuclide Be-7 Concentration in the Atmosphere and Solar Activities”,
*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 4221–4224 (2003).ADSGoogle Scholar - Sakurai H., T. Masuda, K. Endo, et al. “Continuous ubservation of Be-7 in the atmosphere for 5 years”,
*Proc. 25th Intern. Cosmic Ray Conf.*, Durban,**2**, 473–476 (1997).Google Scholar - Sakurai H., Y. Shouji, T. Maeda et al. “A relation between daily variation of Be-7 concentration in atmosphere and sunspot numbers”,
*Proc. 27th Intern. Cosmic Ray Conf.*, Hamburg,**10**, 4138–4138 (2001).ADSGoogle Scholar - Shapiro M.A. “Turbulent mixing within tropopause folds as a mechanism for exchange of chemical constituents between the stratosphere and troposphere”,
*J. Atmos. Sci.*,**37**, No. 5, 994–1004 (1980).CrossRefADSGoogle Scholar - Shea M.A. and D.F. Smart “A summary of major solar proton events”,
*Solar Physics*,**127**, 297–320 (1990).CrossRefADSGoogle Scholar - Singer S.F. “The Specific Ionization of the Cosmic Radiation above the Atmosphere”,
*Phys. Rev.*,**76**, No. 5, 701–702 (1949).CrossRefADSGoogle Scholar - Singer S.F. and F.A. Paneth “Meteorites and cosmic rays”,
*Nature*,**170**, 728–729 (1952).CrossRefADSGoogle Scholar - Steig E.J., P.J. Polissar, M. Stuiver, et al. “Large amplitude solar modulation cycles of
^{1 0}Be in Antarctica: implications for atmospheric mixing and interpretation of the ice core record”,*Geophys. Res. Lett.*,**23**, 523–526 (1996).CrossRefADSGoogle Scholar - Viezee W. and H.B. Singh “The distribution of Beryllium-7 in the troposphere: implications on stratospherictropospheric air exchange”,
*Geophys. Res. Lett.*,**7**, No.10, 805–808 (1980).CrossRefADSGoogle Scholar - Wasson J.T. “Radioactivity in Interplanetary Dust”,
*Icarus*,**2**, No. 1, 54–88 (1963).CrossRefADSGoogle Scholar - Yokoyama Y. and H. Mabuchi “Les nuclides radioactifs induits par le rayonnement cosmique solaire dans les chondrites”,
*C.R. Acad. Sci.***264**, No. 8, B655–B657 (1967).Google Scholar - Yoshimori M., H. Hirayama, and S. Mori “Production of
^{7}Be Nuclei in the Earth ’s Upper Atmosphere from Galactic Cosmic Rays and Solar Energetic Particles”,*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 4273–4276 (2003a).ADSGoogle Scholar - Yoshimori M., H. Hirayama, S. Mori, and K. Sasaki “Seasonal Variations in
^{7}Be Radioactivity Measured at Ground Level”,*Proc. 28th Intern. Cosmic Ray Conf.*, Tsukuba,**7**, 4217–4220 (2003b).ADSGoogle Scholar