Cosmic Rays as an Object of Research

  • Lev I. Dorman
Part of the Astrophysics and Space Science Library book series (ASSL, volume 303)

Abstract

It is natural to define cosmic rays (CR) as particles and photons with energies at least several orders of magnitude higher than the average energy of thermal particles of background plasma. There is internal CR, generated inside the background plasma of object considered, and external CR generated in other objects and propagated to the object considered. We are now aware of CR of different origin:
  • Extragalactic CR of very high energy (up to 1021 eV ), are generated in radiogalaxies, quasars, and other powerful objects in the Universe, and come through intergalactic space to our Galaxy, to the Heliosphere, and into the Earth’s atmosphere. Therefore, they are external CR relative to our Galaxy.

  • Galactic CR, with energy at least up to 1015 - 1016 eV, are generated mainly in supernova explosions and supernova remnants, in magnetospheres of pulsars and double stars, by shock waves in interstellar space and other possible objects in the Galaxy. These CR are internal relative to our Galaxy and external to our Heliosphere and the Earth’s magnetosphere.

  • Solar CR, with energy up to 15–30 GeV, generated in the solar corona in periods of powerful solar flares, are internal CR for the Sun’s corona and external for interplanetary space and the Earth’s magnetosphere.

  • Interplanetary CR, with energy up to 10–100 MeV, are generated by a terminal shock wave at the boundary of the Heliosphere and by powerful interplanetary shock waves. They are internal to our Heliosphere and external to the Earth’s magnetosphere.

  • Magnetospheric (or planetary) CR, with energy up to 10 MeV for Jupiter and Saturn, and up to 30 keV for the Earth, are generated inside the magnetospheres of rotating magnetic planets.

Keywords

Clay Dust Anisotropy Graphite Ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams N. “A temporary increase in the neutron component of CR”, Philos. Mag., 41, 503–505 (1950).Google Scholar
  2. Agrawal V., T.K. Gaisser, P. Lipari, and T. Stanev “Atmospheric neutrino flux above 1 GeV”, Phys.Rev., D53, 1314–1323, (1996).ADSGoogle Scholar
  3. Aizu H., Y. Fujimoto, S. Hasegawa, M. Koshiba, I. Mito, J. Nishimura, K. Yokoi, and M. Schein “Heavy Nuclei in the Primary Cosmic Radiation at Prince Albert, Canada. II”, Phys. Rev., 121, 1206–1218 (1961).ADSCrossRefGoogle Scholar
  4. Alcaraz J., D. Alvisi, B. Alpat et al. “Search for antihelium in cosmic rays”, Phys. Lett., B461, 387–396 (1999).ADSGoogle Scholar
  5. Alfven H. “On the solar origin of cosmic radiation, I”, Phys. Rev., 75, 1732–1735 (1949).ADSCrossRefGoogle Scholar
  6. Alfven H. “On the solar origin of cosmic radiation, II”, Phys. Rev., 77, 375–379 (1950).ADSCrossRefGoogle Scholar
  7. Anders E. and N. Grevesse “Abundances of the elements: Meteoritic and Solar”, Geochimica et Cosmochimica Acta, 53, No. 1, 197–214 (1989).ADSCrossRefGoogle Scholar
  8. Anderson C.D. “The apparent existence of easily deflectable positives”, Science, 76, 238 (1932).ADSCrossRefGoogle Scholar
  9. Anderson C.D. “The positive electron”, Phys. Rev., 43, 491–494 (1933a).ADSCrossRefGoogle Scholar
  10. Anderson C.D. “Cosmic ray positive and negative electrons”, Phys. Rev., 44, 406–416 (1933b).MATHADSCrossRefGoogle Scholar
  11. Apanasenko A.V., V.A. Beresovskaya, M. Fujii et al. “All particle spectrum observed by RUNJOB”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1622–1625 (2001).ADSGoogle Scholar
  12. Asakimori K., T.H. Burnett, M.L. Cherry et al. “Cosmic-ray proton and helium spectra: results from the JACEE experiment”, Astrophys. J., 502, 278–283 (1998).ADSCrossRefGoogle Scholar
  13. Asaoka Y., J. F. Ormes, K. Abel et al. “Precise measurements of cosmic-ray antiproton spectrum following the solar field reversal”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1699–1702 (2001).ADSGoogle Scholar
  14. Axford W.I., E. Leer, and G. Skadron “The acceleration of cosmic rays by shock waves”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 11, 132–137 (1977).Google Scholar
  15. Baade W. and F. Zwicky “Remarks on super-novae and cosmic rays”, Phys. Rev., 46, 76–77 (1934a).ADSCrossRefGoogle Scholar
  16. Baade W. and F. Zwicky “Cosmic rays from super-novae”, Proc. Nat. Acad. Sci. USA, 20, 259–263 (1934b).ADSCrossRefGoogle Scholar
  17. Badhwar G.D., R.L. Golden, J.L. Lacy, J.E. Zipse, R.R. Daniel, and S.A. Stephens “Relative abundance of antiprotons and antihelium in the primary cosmic radiation”, Nature, 274, 137–139 (1978).ADSCrossRefGoogle Scholar
  18. Barnothy J. and M. Forro “Cosmic rays from Nova Herculis”, Nature, 135, 618–619 (1935a).ADSCrossRefGoogle Scholar
  19. Barnothy J. and M. Forro “Diurnal of cosmic ray intensity and Nova Herculis”, Nature, 136, 680–681 (1935b).ADSCrossRefGoogle Scholar
  20. Basini G., R. Bellotti, M.T. Brunetti et al. “The Flux of Cosmic Ray Antiprotons from 3.7 to 24 GeV”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 3, 77–80 (1999).Google Scholar
  21. Bell A.R. “The acceleration of cosmic rays in shock fronts, I”, Mon. Not. Roy. Astron. Soc., 182, 147–156 (1978a).ADSGoogle Scholar
  22. Bell A.R. “The acceleration of cosmic rays in shock fronts, II”, Mon. Not. Roy. Astron. Soc., 182, 443–455 (1978b).ADSGoogle Scholar
  23. Bergström L., J. Edsjö, P. Gondolo, and P. Ullio “Clumpy neutralino dark matter”, Phys. Rev., D59, 043506, 11 pages (1999a).Google Scholar
  24. Bergström L., J. Edsjö, and P. Ullio “Cosmic Antiprotons as a Probe for Supersymmetric Dark Matter?”, Astrophys. J., 526, 215–235 (1999b).ADSCrossRefGoogle Scholar
  25. Bieber J.W., R.A. Burger, R. Engel, T.K Gaisser, S Roesler, T. Stanev “ Antiprotons at Solar Maximum”, Phys. Rev. Lett., 83, 674–677 (1999a).ADSCrossRefGoogle Scholar
  26. Bieber J.W., R.A. Burger, R. Engel, T.K. Gaisser, and T. Stanev “Antiprotons as Probes of Solar Modulation”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 17–20 (1999b).Google Scholar
  27. Bieber, J.W. and P. Evenson “Spaceship Earth— an optimized network of neutron monitors”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1316–1319 (1995).Google Scholar
  28. Binns W.R., T.L. Garrard, P.S. Gibner, M.H. Israel, M.P. Kertzman, J. Klarmann, B.J. Newport, E.C. Stone, and C.J. Waddington “Abundances of ultraheavy elements in the cosmic radiation: results from HEAO 3”, Astrophys. J., 346, No.2, 997–1009 (1989)ADSCrossRefGoogle Scholar
  29. Blanford R.D. and J.R. Ostriker “Particle acceleration by astrophysical shocks”, Astrophys. J., 221, L29–L32 (1978).ADSCrossRefGoogle Scholar
  30. Blokh Ya.L., Dorman L.I., Kaminer N.S., and Kapustin I.N. “Cosmic ray neutron spectrograph on the basis of registration channels with different tau using”, Geomagnetism and Aeronomy, 11, No. 5, 891–892 (1971).Google Scholar
  31. Blokh Ya.L., E.S. Glokova, L.I. Dorman and O.I. Inozemtseva “Electromagnetic conditions in interplanetary space in the period from August 29 to September 10, 1957 determined by cosmic ray variation data”, Proc. 6th Intern. Cosmic Ray Conf., Moscow, 4, 172–177 (1959).Google Scholar
  32. Boezio M., P. Carlson, T. Francke et al. “The Cosmic-Ray Antiproton Flux between 0.62 and 3.19 G eV Measured Near Solar Minimum Activity”, AstroPhys. J., 487, 415–423 (1997).ADSCrossRefGoogle Scholar
  33. Boezio M., M. Ambriola, S. Bartalucci et al. “High-Energy cosmic-ray antiprotons with the CAPRICE98 experiment”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1695–1698 (2001).ADSGoogle Scholar
  34. Bogomolov E.A., N.D. Lubyanaya, V.A. Romanov, S.V. Stepanov and M.S. Shulakova “A stratospheric magnetic spectrometer investigation of the singly charged component spectra and composition of the primary and secondary cosmic radiation” Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 1, 330–335 (1979).Google Scholar
  35. Bogomolov E.A., G.I. Vasilyev, S.Yu. Krut’kov, N.D. Lubyanaya, V.A. Romanov, S.V. Stepanov, and M.S. Shulakova “Galactic antiproton spectrum in the 0.2–5 GeV range”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 2, 72–75 (1987).Google Scholar
  36. Bogomolov E.A., G.I. Vasilyev, S.V. Krut’kov, N.D. Lubyanaya, V.A. Romanov, S.V. Stepanov, M.S. Shulakova “New antiproton studies in the 2–5 GeV range”, Proc. 21th Intern. Cosmic Ray Conf., Adelaide, 3, 288–290 (1990).Google Scholar
  37. Bogomolov E.A., G.I. Vasilyev, S.Yu. Krut’kov, S.V. Stepanov and M.S. Shulakova “The deuterium cosmic ray intensity from balloon measurement in energy range 0.8–1.8 GeV/nucl.”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 2, 598–601 (1995).Google Scholar
  38. Bowen I.S., R.A. Millikan, and H.V. Neher “The influence of the Earth ’s magnetic field on cosmic rays intensities up to the top of the atmosphere”, Phys. Rev., 52, 80–88 (1937).ADSCrossRefGoogle Scholar
  39. Bowen I.S., R.A. Millikan, and H.V. Neher “New light on the nature and origin of the incoming cosmic rays”, Phys. Rev., 53, 861–885 (1938).ADSGoogle Scholar
  40. Buffington A., S.M.Schindler, and C.R. Pennypacker “A measurement of the cosmic-ray antiproton flux and a search for antihelium”, Astrophys. J., 248, 1179–1193 (1981).ADSCrossRefGoogle Scholar
  41. Chapman S.B. “Cosmic rays and magnetic storms”, Nature, 140, No 3540, 423–424. (1937).ADSCrossRefGoogle Scholar
  42. Chardonnet P., J. Orloff, and P Salati “The production of antimatter in our galaxy”, Phys. Lett., B409, 313–320 (1997).ADSGoogle Scholar
  43. Clay J. “Ultraradiation (penetrating radiation), III. Annual variation and variation with the geographical latitude”, Proc. Roy. Acad. Amsterdam, 33, 711 (1930).MATHGoogle Scholar
  44. Clay J. “The Earth-magnetic effect and the corpuscular nature of ultra-radiation”, Proc. Roy. Acad. Amsterdam, 35, 1282 (1932).Google Scholar
  45. Clay J. “Results of the Dutch cosmic ray expedition 1933”, Physica, 1, No. 5, 363–382. (1934).ADSCrossRefGoogle Scholar
  46. Compton A.H. “Progress of cosmic ray survey”, Phys. Rev., 41, 681–682 (1932).ADSCrossRefGoogle Scholar
  47. Compton A.H. “A geographic study of cosmic rays”, Phys. Rev., 43, 387–403 (1933).ADSCrossRefGoogle Scholar
  48. Compton A.H. “Recent developments in cosmic rays”, Rev. Sci. Instr., 7, 71–81 (1936).ADSCrossRefGoogle Scholar
  49. Compton A.H. and R.N. Turner “Cosmic rays on the Pacific Ocean”, Phys. Rev., 52, 799–814 (1937).ADSCrossRefGoogle Scholar
  50. Compton A.H., R.D. Bennet, and J.C. Stearns “Diurnal variation of cosmic rays”, Phys. Rev., 41, 119–126 (1932).ADSCrossRefGoogle Scholar
  51. Compton A.H., E. Wollan, and R.D. Bennet “A precision recording cosmic ray meter”, Rev. Sci. Instr., 5, 415–422 (1934).ADSCrossRefGoogle Scholar
  52. Connell J.J. “Galactic Cosmic-Ray Confinement Time: ULYSSES High Energy Telescope Measurements of the Secondary Radionuclide 10Be”, Astrophys. J., 501, No. 1, L59–L62 (1998).ADSCrossRefGoogle Scholar
  53. Coulomb C.A. “Troisieme memoire sur l’electricitéet le magnetisme”, Memoires de l ’Academie des Sciences, Paris, 612–638 (1785).Google Scholar
  54. Coutu S., A.S. Beach, J.J. Beatty et al. “Positron measurements with the HEAT-pbar instrument”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1687–1690 (2001).ADSGoogle Scholar
  55. De Nolfo G.A., L.M. Barbier, M. Bremerich et al. “A measurement of the 1 0 Be/ 9 Be ratio above 1.0 GeV/nucleon: Results from the 1998 flight of ISOMAX”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1659–1662 (2001).Google Scholar
  56. De Nolfo G.A., N.E. Yanasak, W.R. Binns et al. “New measurements of the Li, Be, and B isotopes as a test of cosmic ray transport models”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 1777–1780 (2003).Google Scholar
  57. Dirac P.A.M. “A theory of electrons and protons”, Proc. Roy. Soc. London, A126, 360–365 (1930).ADSGoogle Scholar
  58. Dirac P.A.M. “Quantized singularities in the electromagnetic field”, Proc. Roy. Soc., London, A133, 60–72 (1931).ADSGoogle Scholar
  59. Dorman L.I. “Two-meson theory of cosmic ray hard component temperature effect”, Special Report 1951–3, Science-Research Institute of Terrestrial Magnetism, Troitsk, Moscow region (1951a).Google Scholar
  60. Dorman L.I. “Instruction for calculation of temperature corrections to hard component of cosmic ray intensity data”, Special Report, 1951–4, Science-Research Institute of Terrestrial Magnetism, Troitsk, Moscow region (1951b).Google Scholar
  61. Dorman L.I. “To the theory of cosmic ray meteorological effects”, Doklady Academy of Sciences of USSR (Moscow), 94, No. 3, 433–436 (1954a).MATHGoogle Scholar
  62. Dorman L.I. “On the temperature effect of the cosmic ray hard component”, Doklady Academy of Sciences of USSR (Moscow), 95, No.1, 49–52 (1954b).Google Scholar
  63. Dorman L.I. “On the nature of cosmic ray variations”, Ph. D. Thesis, Physical Lebedev Institute Academy of Sciences of USSR, Moscow, pp. 327 (1955).Google Scholar
  64. Dorman L.I. “Information on solar corpuscular streams obtained from investigation of cosmic ray variations”, In the book “Physics of solar corpuscular streams”, Academy of Sciences of USSR Press, Moscow, pp. 112–128 (1957).Google Scholar
  65. Dorman L.I. “To the theory of meteorological effects of cosmic ray neutron component”, Proc. of Yakutsk Filial of Academy of Sciences, Series of Physics, Academy of Sciences of USSR Press, Moscow, No. 2, 68–72 (1958a).Google Scholar
  66. Dorman L.I. “To the theory of meteorological effects of cosmic ray soft and general components”, Proc. of Yakutsk Filial of Academy of Sciences, Series of Physics, Academy of Sciences of USSR Press, Moscow, No. 2, 59–67 (1958b).Google Scholar
  67. Dorman L.I. “The generation and propagation of solar cosmic rays”, Nuovo Cimento, Vol. 8, Suppl. No. 2, (Proc. of 5th Intern.Cosmic Ray Conf., Varenna, 1957), 391–402 (1958c).Google Scholar
  68. Dorman L.I. “On the energetic spectrum and lengthy of cosmic ray intensity increase on the Earth caused by shock wave and albedo from magnetized front of corpuscular stream”, Proc. of 6th Intern. Cosmic Ray Conf., Moscow, Vol. 4, 132–139 (1959a).Google Scholar
  69. Dorman L.I. “To the theory of cosmic ray modulation by solar wind”, Proc. of 6th Intern. Cosmic Ray Conf., Moscow, Vol. 4, 328–334 (1959b).MATHGoogle Scholar
  70. Dorman L.I. “The origin of cosmic ray variations”, D. Sci. Thesis, Physical Lebedev Institute Academy of Sciences of USSR, Moscow (1962).Google Scholar
  71. Dorman L.I. “Theory of cosmic ray variations”, Cosmic Rays (Moscow, NAUKA), 13, 5–66 (1972).Google Scholar
  72. Dorman L.I. “Geophysical effects and second components of cosmic rays in the atmosphere”, Cosmic Rays (Moscow, NAUKA), 14, 5–28 (1974).Google Scholar
  73. Dorman L.I. “Cosmic rays in the atmosphere and magnetosphere of the Earth and in the interplanetary space (invited review)”, In “Geomagnetism and High Layers of the Atmosphere”, Moscow, NAUKA, 7–82 (1975).Google Scholar
  74. Dorman L.I. “The nature of the observed cosmic ray spectrum, I. Classification and the features of particle propagation in space”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 1, 405–410 (1977a).Google Scholar
  75. Dorman L.I. “The nature of the observed cosmic ray spectrum, II. Intervals (1) and (2) (3·1011–1020eV)“, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 1, 411–415 (1977b).Google Scholar
  76. Dorman L.I. “The nature of the observed cosmic ray spectrum, III. Intervals (3)–(5) (104–3·1011eV)”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 1, 416–421 (1977c).Google Scholar
  77. Dorman L.I. “The mode of energy gain by particles in the statistical acceleration mechanism including the angular distribution of particles and the relativistic composition of velocities”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 2, 50–54 (1979a).Google Scholar
  78. Dorman L.I. “Generation of energy spectrum by statistical mechanism of particle acceleration”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 2, 55–60 (1979b).Google Scholar
  79. Dorman L.I. “Cosmic ray interaction with magnetosphere and ionosphere (invited paper)”, In the book: “Problems of Solar-Terrestrial Relations”;, Ashkhabad, 108–131 (1981).Google Scholar
  80. Dorman L.I. “On the formation of energy spectrum and character of particle energy gain in the statistical mechanism of acceleration”, Cosmic Rays (Moscow, NAUKA), 23, 5–13 (1983).Google Scholar
  81. Dorman L.I. “Geomagnetic and atmospheric effects in primary and secondary cosmic rays; cosmogeneous nuclei (rapporteur paper)”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 8, 186–237 (1987a).ADSGoogle Scholar
  82. Dorman L.I. “Cosmic ray intensity variations (ground observations, methods of investigations, theory)”. In Problems of Cosmic Ray Physics, Moscow, Nauka, 45–82 (1987b).Google Scholar
  83. Dorman L.I. “Cosmic rays: composition, spectrum, anisotropy and origin”, In Results of Science and Technology, Seria Astronomy, 33, 3–120 (1988).Google Scholar
  84. Dorman L.I. “On the Cosmic Ray World Service”, Izvestia Academy of Science of USSR, Seria Phys., 57, No. 7, 149–152 (1993).Google Scholar
  85. Dorman I.V. and L.I. Dorman “Solar wind properties obtained from the study of the 11-year cosmic ray cycle”, J. Geophys. Res., 72, No. 5, 1513–1520 (1967a).ADSCrossRefGoogle Scholar
  86. Dorman I.V. and L.I. Dorman “Propagation of energetic particles through interplanetary space according to the data of 11-year cosmic ray variations”, J. Atmosph. & Terr. Phys., 29, No.4, 429–449 (1967b).ADSCrossRefGoogle Scholar
  87. Dorman I.V. and L.I. Dorman “S.N. Vernov and development of investigation of cosmic ray variations in the Soviet Union”, Izvestia Academy of Sciences of USSR, Series Phys., 47, No.9, 1678–1683 (1983).Google Scholar
  88. Dorman L.I. and E.L. Feinberg “On the nature of cosmic ray variations”, Proc. 4th Intern. Cosmic Ray Conf., Guanajhato, Mexico, 395–432 (1955).Google Scholar
  89. Dorman L.I. and G.I. Freidman “The cosmic ray burst of February 23, 1956 and its interpretation”, Proc. of Yakutsk Filial of Academy of Sciences, Series of Physics, Academy of Sciences of USSR Press, Moscow, No. 2, 129–169 (1958).Google Scholar
  90. Dorman L.I. and G.I. Freidman “On the possibility of charged particle acceleration by shock waves in the magnetized plasma”, Proc. All-Union Conf. on Magnetohydrodinamics and Plasma Physics, Latvia SSR Academy of Sciences Press, Riga, 77–81 (1959).Google Scholar
  91. Dorman L.I, Iucci N., Villoresi G. “The use of cosmic rays for continuos monitoring and prediction of some dangerous phenomena for the Earth’s civilization”, Astrophysics and Space Science, 208, 55–68 (1993a).ADSCrossRefGoogle Scholar
  92. Dorman L.I., Iucci N. and Villoresi G. “Possible monitoring of space processes by cosmic rays”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 695–698 (1993b).Google Scholar
  93. Dorman L.I., Iucci N. and Villoresi G. “Space dangerous phenomena and their possible prediction by cosmic rays”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 699–702 (1993c).Google Scholar
  94. Dorman L.I. and M.E. Kats “Cosmic ray kinetics in space”, Space Science Review, 20, 529–575 (1977).ADSCrossRefGoogle Scholar
  95. Dorman L.I. and I.Ya. Libin “Cosmic ray scintillations and dynamic processes in space”, Space Sci. Rev., 39, 91–152 (1984).ADSCrossRefGoogle Scholar
  96. Dorman L.I., L.A. Pustil’nik, A. Sternlieb, I.G. Zukerman, A.V. Belov, E.A. Eroshenko, V.G. Yanke, H. Mavromichalaki, C. Sarlanis, G. Souvatzoglou, S. Tatsis, N. Iucci, G. Villoresi, Yu. Fedorov, B.A. Shakhov, and M. Murat “Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in Real Time”, IEEE Plasma Sciences, in press (2004).Google Scholar
  97. Dorman L.I. and D. Venkatesan “Solar Cosmic Rays”, Space Sci. Review, 64, 183–362 (1993).ADSCrossRefGoogle Scholar
  98. Duperier A. “The meson intensity at the surface of the Earth and the temperature at the production level”, Proc. Phys. Soc., 62A, No. 11, 684–696 (1949).ADSGoogle Scholar
  99. Duperier A. “On the positive temperature effect of the upper atmosphere and the process of meson production”, J. Atm. Terr. Physics, 1, No. 5–6, 296–310 (1951)CrossRefGoogle Scholar
  100. Elster J. and H. Geitel “Weitere Versuche uber die Elektrizitats zerstrehung in abgeschlossenen Luftmengen”, Phys. Ztschr., 2, 560 (1900).Google Scholar
  101. Evenson P. “A Search for Antihelium in Primary Cosmic Radiation”, Astrophys. J., 176, 797–808 (1972).ADSCrossRefGoogle Scholar
  102. Feinberg E.L. “On the nature of cosmic ray barometric and temperature effects”, DAN SSSR, 53, No. 5, 421–424 (1946).Google Scholar
  103. Fermi E. “On the origin of the cosmic radiation”, Phys. Rev., 75, 1169–1174 (1949).MATHADSCrossRefGoogle Scholar
  104. Forbush S.E. “On cosmic ray effects associated with magnetic storms”, Terr. Magn. Atmosph. Electr., 43, 203–218 (1938).CrossRefGoogle Scholar
  105. Forbush S.E. “On the 27-day and 13.5-day waves in cosmic ray intensity and their relation to corresponding waves in terrestrial-magnetic activity”, Assoc. Terr. Magn. Electr. Bull, 11 , 438 (1940).Google Scholar
  106. Forbush S.E. “Solar influences on cosmic rays”, Proc. Nat. Acad. Sci. USA, 43, No. 1, 28–41 (1957).ADSCrossRefGoogle Scholar
  107. Forro M. “Temperature effect of cosmic radiation at 100 m-water equivalent depth”, Phys. Rev., 72, 868–869 (1947).ADSCrossRefGoogle Scholar
  108. Fuke H., T. Maeno, S. Orito et al. “Search for Cosmic-Ray Antideuteron with the BESS Spectrometer”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 1797–1800 (2003).Google Scholar
  109. Gaisser T.K., M. Honda, P. Lipari, and T. Stanev “Primary spectrum to 1 TeV and beyond”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1643–1647 (2001).ADSGoogle Scholar
  110. Garcia-Munoz M., G.M. Mason, and J.A. Simpson “Cosmic Ray Age”, Astrophys. J, 217, 859–877 (1977).ADSCrossRefGoogle Scholar
  111. Ginzburg V.L. “Cosmic ray origin and radio-astronomy”, UFN, 51, No. 3, 343–392 (1953a).Google Scholar
  112. Ginzburg V.L. “Supernova and Nova stars as sources of cosmic and radio radiations”, DAN SSSR, 92, No. 6, 1133–1136 (1953b).MATHGoogle Scholar
  113. Garcia-Munoz M., G.M. Mason, and J.A. Simpson “The age of the galactic cosmic rays derived from the abundance of 10Be”, Astrophys. J., 217, No. 3, 859–877 (1977).ADSCrossRefGoogle Scholar
  114. Garcia-Munoz, M., J.A. Simpson, and J.P. Wefel “The propagation lifetime of galactic cosmic rays determined from the measurement of the beryllium isotopes”, Proc. 17th Intern. Cosmic Ray Conf., Paris, 2, 72–75 (1981).Google Scholar
  115. Golden R.L., S. Horan, B.G. Mauger, G.D. Badhwar, J.L. Lacy, S.A. Stephens, R.R. Daniel and J.E. Zipse “Evidence for the existence of cosmic-ray antiprotons”, Phys. Rev. Lett., 43, 1196–1199 (1979).ADSCrossRefGoogle Scholar
  116. Golden R.L., B.G. Mauger, S. Nunn and S. Horan “Energy dependence of the P/P ratio in cosmic rays”, Astrophys. Lett., 24, No.2, 75–83 (1984).ADSGoogle Scholar
  117. Golden R.L., S.J. Stochaj, S.A. Stephens et al. “Search for Antihelium in the Cosmic Rays”, Astrophys. J., 479, 992–996 (1997).ADSCrossRefGoogle Scholar
  118. Hams T., K. Abe, K. Anraku et al. “Measurement of electron spectrum to high energies with the BESS-1999 experiment”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 1813–1816 (2003).ADSGoogle Scholar
  119. Hess V.F. “Uber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten”, Phys. Ztschr., 13, 1084–1091. (1912).Google Scholar
  120. Hess V.F. and A. Demmelmair “World-wide effect in cosmic ray intensity, as observed during a recent geomagnetic storm”, Nature, 140, 316–317. (1937).ADSCrossRefGoogle Scholar
  121. Hess V.F. and H.T. Graziadei “On the diurnal variation of the cosmic radiation”, Terr. Magn., 41, No. 1, 9–14. (1936).CrossRefGoogle Scholar
  122. Hess V. and R. Steinmaurer “Cosmic rays from Nova Herculis?”, Nature, 135, 617–618 (1935).ADSCrossRefGoogle Scholar
  123. Hoffman G. “Probleme der Ultrastrhlung”, Phys. Ztschr., 33, No. 17, 633–662. (1932).Google Scholar
  124. Johnson T.H. “Preliminary report of angular distribution measurements of cosmic radiation in equatorial latitudes”, Phys. Rev., 44, 856–858 (1933).ADSCrossRefGoogle Scholar
  125. Johnson T.H. “Cosmic ray intensity and geomagnetic effects”, Rev. Mod. Phys., 10, 193–244 (1938).ADSCrossRefGoogle Scholar
  126. Johnson T.H. and D.V. Read “Unidirectional measurements of the cosmic ray latitude effects”, Phys. Rev., 51, 557–564 (1937).ADSCrossRefGoogle Scholar
  127. Kolhörster W. “Intensitates und Richtungsmessungen der durchdringenden Strahlung”, Berlin. Ber., 24, 366–377 (1923).Google Scholar
  128. Kolhörster W. “Hohenstrahlung and Nova Herculis”, Phys. Ztschr., 93, No. 5–6, 429–431. (1935).CrossRefGoogle Scholar
  129. Krymsky, G.F. “A regular mechanism for the acceleration of charged particles on the front of a shock wave”, DAN SSSR, 243, 1306–1308 (1977).Google Scholar
  130. Kyker G.C. and A.R. Liboff “Absolute cosmic ray ionization measurements in a 900-liter chamber”, J. Geophys. Res., A83, No. 12, 5539–5549 (1978).ADSCrossRefGoogle Scholar
  131. Lamanna G., B. Alpat, R. Battiston, B. Bertucci, W.J. Burger, G. Esposito, E. Fiandrini, and P. Zuccon “Measurement of deuteron spectra in Low Earth Orbit with the Alpha Magnetic Spectrometer”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1614–1617 (2001).ADSGoogle Scholar
  132. Lindholm F. and G. Hoffmann “Registriebeobachtungen der Hessshen Ultra-y-Strahlung auf Muottas Muralgi (2456 m)”, Gerlach Beitz. Ztschr. Geophys., 20, 12 (1928).Google Scholar
  133. Link J.T., L.M. Barbier, W.R. Binns et al. “Measurements of the Ultra-Heavy Galactic Cosmic-Ray Abundances between Z = 30 and Z = 40 with the TIGER Instrument”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 1781–1784 (2003).ADSGoogle Scholar
  134. Lukasiak A., F.B. McDonald, and W.R. Webber “Voyager measurements of the isotopic composition of Li, Be and B nuclei”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 3, 389–392, 1997.Google Scholar
  135. Maeda K. and M. Wada “Atmospheric temperature effect upon the cosmic ray intensity at sea level”, J. Sci. Res. Inst. (Tokyo), 48, 71–79 (1954).Google Scholar
  136. McDonald F.B. “Integration of neutron monitor data with spacecraft observations; a historical perspective”, Space Sci. Rev., 93, 263–284 (2000).ADSCrossRefGoogle Scholar
  137. Menn W., L.M. Barbier, E.R. Christian et al. “Measurement of the absolute proton and helium flux at the top of the atmosphere using IMAX”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 3, 409–412 (1997).Google Scholar
  138. Messerschmidt W. “Über Schwankungsmessungen der Ultrastrahlung, II”, Ztschr. Phys., 85, 332–335 (1933).CrossRefGoogle Scholar
  139. Messerschmidt W. “Ionizationsmessungen zum Zusammenhang zwischen Ultrastrahlung und Nova Herculis”, Phys. Ztschr., 95, No 1–2, 42–45. (1935).CrossRefMATHGoogle Scholar
  140. Mewaldt R.A. “Isotope abundances of solar coronal material derived from solar energetic particle measurements”, Proc. Cosm. Abund. of Matt., AIP No. 183, 124 (1989).ADSGoogle Scholar
  141. Mewaldt R.A. “The abundances of isotopes in the cosmic radiation”, AIP Conf Proc., 183, No. 1, 124–146 (1989).ADSCrossRefGoogle Scholar
  142. Meyer J.P. “Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays”, Astrophys. J. Suppl., 57, No. 1, 173–204 (1985).ADSCrossRefGoogle Scholar
  143. Meyer J.P., L.O.C. Drury and D.C. Ellison “Galactic cosmic rays from supernova remnants .1. A cosmic-ray composition controlled by volatility and mass-to-charge ratio”, Astrophys. J., 487, No. 1, 182–196 (1997).ADSCrossRefGoogle Scholar
  144. Millikan R.A. “On the question of the constancy of the cosmic radiation and the relation of these rays to meteorology”, Phys. Rev., 36, 1595–1603 (1930).ADSCrossRefGoogle Scholar
  145. Millikan R.A. and G.H. Cameron “High frequency rays of cosmic origin”, Phys. Rev., 28, 851–868 (1926).ADSCrossRefGoogle Scholar
  146. Millikan R.A. and G.H. Cameron “High altitude tests on the geographical directional and spectral distribution of cosmic rays”, Phys. Rev., 31, 163–173 (1928a).ADSCrossRefGoogle Scholar
  147. Millikan R.A. and G.H. Cameron “The origin of the cosmic rays”. Phys. Rev., 32, 533–557 (1928b)MATHADSCrossRefGoogle Scholar
  148. Mitchell J.W., L.M. Barbier, E.R. Christian et al. “Measurement of 0.25–3.2 GeV Antiprotons in the Cosmic Radiation”, Phys. Rev. Lett., 76, 3057–3060 (1996).ADSCrossRefGoogle Scholar
  149. Molnar A. and M. Simon “Test of the Diffusion Halo and the Leaky Box Model by means of secondary radioactive cosmic ray nuclei with different lifetimes” Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1860–1863 (2001).ADSGoogle Scholar
  150. Monk A.T. and A.H. Compton “Recurrence phenomena in cosmic ray intensity”, Rev. Mod. Phys., 11, 173–179 (1939).ADSCrossRefGoogle Scholar
  151. Moraal H., A. Belov, and J.M. Clem “Design and co-ordination of multi-station international neutron monitors networks”, Space Sci. Rev., 93, 285–303 (2000).ADSCrossRefGoogle Scholar
  152. Moskalenko I. and A.W. Strong “Diffuse Galactic y-rays: Constraining Cosmic-Ray Origin and Propagation”, Astrophys. and Space Science, 272, 247–254 (2000).ADSCrossRefGoogle Scholar
  153. Myssowsky L. and L. Tuwim “Unregelmassige Intensitatsschwankungen der Hohenstrahlung geringer in Seehohe”, Ztschr. Phys., 39, No 2–3, 146–150. (1926).CrossRefGoogle Scholar
  154. Nozaki M., M. Sasaki, T. Saeki et al. “A search for antihelium down to 10–6 relative to helium”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 3, 85–88 (1999).Google Scholar
  155. Olbert S. “Atmospheric effects on cosmic ray intensity near sea level”, Phys. Rev., 92, 454–461 (1953).ADSCrossRefGoogle Scholar
  156. Orito S., T. Maeno, H. Matsunaga et al. “Precision Measurement of Cosmic-Ray Antiproton Spectrum”, Phys. Rev. Lett., 84, 1078–1081 (2000).ADSCrossRefGoogle Scholar
  157. Ormes J.F., A.A. Moiseev, T. Saeki et al. “Antihelium in Cosmic Rays: A New Upper Limit and Its Significance”, Astrophys. J., 482, 187–190 (1997).ADSCrossRefGoogle Scholar
  158. Richtmyer R.D. and E. Teller “On the origin of cosmic rays”, Phys. Rev., 75, 1729–1731 (1948).ADSCrossRefGoogle Scholar
  159. Roka E. “Über einen indikerten Einfluss der Sonnenäktivität auf die intensität der kosmischen Strahlung”, Ztschr. Naturforsch., 5A, 517 (1950).ADSGoogle Scholar
  160. Saeki T., K. Anraku, S Orito et al. “A new limit on the flux of cosmic antihelium”, Phys. Lett., B422, 319–324 (1998).ADSGoogle Scholar
  161. Sasaki M., M. Nozaki, T. Saeki et al. “A search for antihelium with the BESS spectrometer”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1711–1714 (2001).ADSGoogle Scholar
  162. Schein M., W.P. Jesse, and E.O. Wollan “The nature of the primary cosmic radiation and the origin of the mesotron”, Phys. Rev., 59, 615–618 (1941).ADSCrossRefGoogle Scholar
  163. Seo E.S. and V.S. Ptuskin “Stochastic reacceleration of cosmic rays in the interstellar medium”, Astrophys. J., 431, 705–714 (1994)ADSCrossRefGoogle Scholar
  164. Seo E.S., F.B. McDonald, N. Lal and W.R. Webber “Study of cosmic-ray H and He isotopes at 23 AU”, Astrophys. J., 432, 656–664 (1994)ADSCrossRefGoogle Scholar
  165. Simon M., A. Molnar and S. Roesler “A new calculation of the interstellar secondary cosmic-ray antiprotons”, Astrophys. J., 499, 250–257 (1998).ADSCrossRefGoogle Scholar
  166. Simpson J.A. “The cosmic radiation: reviewing the present and future” (The Victor Hess memorial lecture), Proc. 25th Intern. Cosmic Ray Conf., 8, 4–23 (1997).ADSGoogle Scholar
  167. Simpson J.A., W.H. Fonger, and S.B. Treiman “Cosmic radiation intensity-time variations and their origin. I. Neutron intensity variation method and meteorological factors”, Phys. Rev., 90, 934–950 (1953).ADSCrossRefGoogle Scholar
  168. Smoot G.F., A. Buffington, and C.D. Orth “Search for cosmic-ray antimatter”, Phys. Rev. Lett., 35, 258–261 (1975).ADSCrossRefGoogle Scholar
  169. Steinke E. “Wasserversenkmessungen der durchdrinkenden Hessschen Strahlung”, Ztschr. Phys., 58, 183–193 (1929).CrossRefGoogle Scholar
  170. Steinmaurer R. and H.T. Graziadei “Ergebnisse der Registrierung der kosmischen Ultrastrahlung auf dem Hafelekar (2300 m) bei Innsbruck, II Teil. Meteorologische und Solare Einflüsse auf die Ultrastrahlung”, Sitzungs ber. Akad. Wiss. Wien, 22, No. 21/22, 672–685 (1933).Google Scholar
  171. Stephens S.A. “Deuterium and He-3 in cosmic rays”, Adv. Space Res., 9, No. 12, 145–148 (1989).ADSCrossRefGoogle Scholar
  172. Stochaj S.J. “Direct measurements of cosmic rays”, In Invited, Rapporteur, and Highlight papers of 27th ICRC, Hamburg, 136–146 (2001).Google Scholar
  173. Stoker P.H. “Relativistic Solar Proton Events”, Space Sci. Rev. 73, 327–385 (1994).ADSCrossRefGoogle Scholar
  174. Treiman S.B. “Effect of equatorial ring current on cosmic ray intensity”, Phys. Rev., 89, 130–133 (1953).ADSCrossRefGoogle Scholar
  175. Ullio P. “Signatures of exotic physics in antiproton cosmic ray measurements”, Astro-Phys./9904086, 7 pages (1999).Google Scholar
  176. Vannuccini E. on behalf of the CAPRICE98 collaboration “Measurement of the Deuterium Flux in the Kinetic Energy Range 12–22 GeV/n with the CAPRICE98 Experiment”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 1801–1804 (2003)Google Scholar
  177. Vernov S.N. “Cosmic ray latitude effect in the stratosphere”, Izvestia of Academy of Science of USSR, Ser. Phys., No. 5/6, 738–740 (1938).Google Scholar
  178. Vernov S.N. “Analysis of cosmic ray latitude effect in the stratosphere”, DAN SSSR (Reports ofAcademy of Science of USSR), 23, No. 2, 141–143 (1939).Google Scholar
  179. Waddington C.J. “Propagation of elements just heavier than Nickel”, In Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed R.A. Mewaldt et al., AIP Conf. Proc., 528, 441–444 (2000).Google Scholar
  180. Waddington C.J. “Discrimination between possible cosmic ray sources”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1784–1787 (2001).ADSGoogle Scholar
  181. Wang J.Z., E.S. Seo, K. Anraku, et al. “Measurement of cosmic-ray hydrogen and helium and their isotopic composition with the BESS experiment”, Astrophys. J., 564, No.1, 244–259 (2002).ADSCrossRefGoogle Scholar
  182. Webber W.R, R.L. Golden, S.J. Stochaj, J.F. Ormes and R.E. Strittmatter “A measurement of the cosmic ray 2H and 3He spectra and 2H/4He and 3He/4 He ratios in 1989”, Astrophys. J., 380, No. 1, 230–234 (1991).ADSCrossRefGoogle Scholar
  183. Wiedenbeck M.E. and D.E. Greiner “A cosmic-ray age based on the abundance of Be-10”, Astrophys. J., 239, L139–L142 (1980).ADSCrossRefGoogle Scholar
  184. Wilson C.T.R. “On the leakage of electricity through dust-free air”, Proc. Cambr. Phil. Soc., 11, 32 (1900).Google Scholar
  185. Wilson C.T.R. “On the ionization of atmospheric air”, Proc. Roy. Soc., London, 68, 151–161 (1901).CrossRefMATHGoogle Scholar
  186. Yamamoto A., K. Abe, K. Anraku, et al. “BESS and its future prospect for polar long duration flights”, Adv. Space Res., 30, No. 5, 1253–1262 (2002).ADSCrossRefGoogle Scholar
  187. Yanasak N., W.R. Binns, A.C. Cummings, E.R. Christian, J.S. George, P.L. Hink, J. Klarmann, R.A. Leske, M. Lijowski, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, and M.E. Wiedenbeck. “Implications for cosmic ray propagation from ACE measurements of radioactive clock isotope abundances”, Proc. 26th Intern. Cosmic Ray Conf., Salt-Lake City, 3, 9–12 (1999).Google Scholar
  188. Yanasak N.E., M.E. Wiedenbeck, R.A. Mewaldt et al. “Measurement of the Secondary Radionuclides 10Be, 26A1, 36C1, 54Mn, and 14C and Implications for the Galactic Cosmic-Ray Age”, Astrophys. J, 563, 768–792 (2001)ADSCrossRefGoogle Scholar
  189. Yoshida S. and M. Wada “Storm-time increase of cosmic ray intensity”, Nature, 183, No. 4658, 381–383 (1959).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lev I. Dorman
    • 1
    • 2
  1. 1.Israel Cosmic Ray Center, Space Weather Center, and Emilio Segrè ObservatoryTel Aviv University, Israel Space Agency, and TechnionQazrinIsrael
  2. 2.Cosmic Ray Department of IZMIRANRussian Academy of ScienceTroitskRussia

Personalised recommendations