Skip to main content

Development of Hybrid Electronic-Density-Functional/Molecular-Dynamics Simulation Schemes for Ceramics and Semiconductors

  • Conference paper
IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 115))

  • 584 Accesses

Abstract

Recent development in hybrid elecronic-density-functional/molecular-dynamics simulation schemes is reviewed. In the hybrid scheme, a total system is partitioned into the quantum-mechanical (QM) region treated by the electronicdensity-functional theory and the molecular dynamics (MD) region in which atoms are interacting through the empirical inter-atomic potential. In the former hybrid scheme [Ogata et al., Comp. Phys. Comm. 149 (2002) 30], appropriate selection of QM atoms for seamless coupling between the QM and MD regions is limited. Novel hybrid scheme that is free from the limitation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nanoparticles and Nanostructured Films, edited by J.H. Fendler (Wiley-VCH, NY, 1998).

    Google Scholar 

  2. Y.-M. Chiang, D. Birnie II, and W.D. Kingery, Physical Ceramics (Wiley & Sons, New York, 1997).

    Google Scholar 

  3. A. Nakano, M.E. Bachlechner, P. Branicio, T.J. Campbell, I. Ebbsjö, R.K. Kalia, A. Madhukar, S. Ogata, A. Omeltchenko, J.P. Rino, F. Shimojo, P. Walsh, and P. Vashishta, IEEE Trans. Electron Devices 47 (2000) 1804.

    Article  Google Scholar 

  4. P. Hoenberg and W. Kohn, Phys. Rev. 136 (1964) B864;

    Article  MathSciNet  Google Scholar 

  5. W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.

    Article  MathSciNet  Google Scholar 

  6. See, e.g., M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1045.

    Article  Google Scholar 

  7. M. Eichinger, P. Tavan, J. flutter, and M. Parinello, J. Chem. Phys. 110 (1999) 10452.

    Article  Google Scholar 

  8. S. Ogata, F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, Comp. Phys. Comm. 149 (2002) 30–38.

    Article  Google Scholar 

  9. J.R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72 (1994) 1240.

    Article  Google Scholar 

  10. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia, Comp. Phys. Comm. 138 (2001) 143.

    Article  MATH  Google Scholar 

  11. F. Shimojo, T.J. Campbell, R.K. Kalia, A. Nakano, S. Ogata, P. Vashishta, and K. Tsuruta, Future Generation Comp. Sys. 17 (2000), 279.

    Article  Google Scholar 

  12. S. Ogata, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia, submitted to J. Appl. Phys.

    Google Scholar 

  13. M. Svensson, S. Hymbel, R.D.F. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Comp. Chem. 100 (1996) 19357.

    Google Scholar 

  14. U. Eichler, C. M. Kölmel, and J. Sauer, J. Comp. Chem. 18 (1996) 463.

    Article  Google Scholar 

  15. F.H. Stillinger and T.A. Weber, Phys. Rev. B 31 (1985) 5262.

    Article  Google Scholar 

  16. F.H. Streitz and J.W. Mintmire, Phys. Rev. B 50, (1994) 11996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ogata, S. (2004). Development of Hybrid Electronic-Density-Functional/Molecular-Dynamics Simulation Schemes for Ceramics and Semiconductors. In: Kitagawa, H., Shibutani, Y. (eds) IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength. Solid Mechanics and its Applications, vol 115. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2111-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2111-4_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6576-6

  • Online ISBN: 978-1-4020-2111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics