Skip to main content

Study on Strength of Microscopic Material by Simulations with Atom and Electron Models

  • Conference paper
IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 115))

  • 585 Accesses

Abstract

The “ideal strength” or the “theoretical strength” is originally defined as the stress at which a perfect crystal becomes mechanically unstable, and is a fundamental mechanical parameter of material. The definition can be extended to the mechanical instability of inhomogeneous structures. This paper reviews the simulations on the “ideal strength” conducted by our groups based on quantum mechanics, and three cases are presented. (1)The ideal shear strength of silicon is precisely evaluated by ab initio calculations. (2)The ideal deformation of carbon nanotubes and its relationship with the electric conductivity are examined by semi–empirical band calculation. (3)The structure and strength of interface between aluminum and silicon are investigated by ab initio molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford UP, (1954).

    MATH  Google Scholar 

  2. Milstein, F., Phys. Rev., B, 3 (1971), 1130–1141.

    Article  Google Scholar 

  3. Nielsen, O.H. and Martin, R.M., Phys. Rev., B, 32 (1985), 3792–3805.

    Article  Google Scholar 

  4. Karki, B.B., Ackland, G.J. and Crain, J., J. Phys. Condens. Matter, 9(1997), 8579–8589.

    Article  MATH  Google Scholar 

  5. Kohyama, M. and Hoekstra, J., In Kitagawa, H, Aihara, T. and Kawazoe, Y., editors, Mesoscopic dynamics of fracture, 166–175. Springer–Verlag, (1998).

    Chapter  Google Scholar 

  6. Bachelet, G.B., Hamann, D.R. and Schluter, M., Phys. Rev., B, 26(1982), 4199–4228.

    Article  Google Scholar 

  7. Hohenberg, P. and Kohn, W., Phys. Rev., 136(1964), B864–871.

    Article  MathSciNet  Google Scholar 

  8. Kohn, W. and Sham, L.J., Phys. Rev., 140(1965), A1133–1138.

    Article  MathSciNet  Google Scholar 

  9. Slater, J.C. and Koster, G.F., Phys. Rev., 94(1954), 1498–1524.

    Article  MATH  Google Scholar 

  10. Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y., J. Phys., C, 21(1988), 35–66.

    Google Scholar 

  11. Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge University Press, (1995).

    Google Scholar 

  12. Daw, M.S. and Baskes, M.I., Phys. Rev., B, 29(1984), 6443–6452.

    Article  Google Scholar 

  13. Jacobsen, K.W., Norskov, J.K. and Puska, M.J., Phys. Rev., B, 35(1987), 7423–7442.

    Article  Google Scholar 

  14. Kitamura, T. and Umeno, Y., Modelling Simul. Mater. Sci. Eng., 11(2003), 127–136.

    Article  Google Scholar 

  15. Umeno, Y., Kitamura, T., Date, K., Hayashi, M. and Iwasaki, T., Comp. Mater. Sci., 25(2002), 447–456.

    Article  Google Scholar 

  16. Izumi, S., Sato, Y., Hara, S. and Sakai, S., J. Soc. Mat. Sci., Japan (in Japanese), 52(2003), 225–230.

    Article  Google Scholar 

  17. Wang, J., Yip, S., Phillpot, S. and Wolf, D., Phys. Rev., B, 71(1993), 4182–4185.

    Google Scholar 

  18. Wang, J., Yip, S., Phillpot, S. and WoIf, D., Phys. Rev., B, 52(1995), 12627–12635.

    Article  Google Scholar 

  19. Kitamura, T., Yashiro, K. and Ohtani, R., JSME Int. J., A, 40(1997), 430–435.

    Article  Google Scholar 

  20. Ob, M., Wang, L.G. and Vitek, V., Comp. Mater. Sci., 8(1997), 100–106.

    Article  Google Scholar 

  21. Sob, M., Wang, L.G. and Vitek, V., Mater. Sci. Eng., A, 234–236(1997), 1075–1078.

    Article  Google Scholar 

  22. Umeno, Y. and Kitamura, T., Mater. Sci. Eng., B, 88(2001), 79–84.

    Article  Google Scholar 

  23. Ogata, S., Hirosaki, N., Kocer, C. and Kitagawa, H., Phys. Rev., B, 64(2001), 172–102.

    Article  Google Scholar 

  24. Ogata, S., Li, J. and Yip, S., Science, 298(2002), 807–811.

    Article  Google Scholar 

  25. Hirosaki, N., Kocer, C. and Ogata, S., Phys. Rev., B, 67(2003), 035–210.

    Google Scholar 

  26. Yashiro, K., Oho, M., Yamagami, K. and Tomita, Y., J. Soc. Mat. Sci., Japan (in Japanese), 52(2403), 241–246.

    Article  Google Scholar 

  27. Umeno, Y., Kitamura, T. and Kushima, A., Modelling Simul. Mater. Sci. Eng., submitted.

    Google Scholar 

  28. Kitamura, T., Umeno, Y. and Tsuji, N., Comp. Mater. Sci., submitted.

    Google Scholar 

  29. Kresse, G. and Furthmüller, J., Phys. Rev., B, 54(1996), 11169–11186.

    Article  Google Scholar 

  30. Ohta, H., Miura, H. and Kitano, M., J. Soc. Mat. Sci., Japan, 45(1996), 1322–1327.

    Article  Google Scholar 

  31. Umeno, T. and Kitamura, T., Proc. of Nanotech2002: ACRS Joint Meeting/MSM ℰICCN, San Juan, Puerto Rico, 405–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Umeno, Y., Kitamura, T. (2004). Study on Strength of Microscopic Material by Simulations with Atom and Electron Models. In: Kitagawa, H., Shibutani, Y. (eds) IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength. Solid Mechanics and its Applications, vol 115. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2111-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2111-4_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6576-6

  • Online ISBN: 978-1-4020-2111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics