State of the Art and Prospects of Macromolecular X-Ray Crystallography at High Hydrostatic Pressure

  • R. Fourme
  • E. Girard
  • R. Kahn
  • I. Ascone
  • M. Mezouar
  • T. Lin
  • J. E. Johnson
Conference paper
Part of the NATO Science Series book series (NAII, volume 140)


X-ray crystallography is by far the most important method of structural biology as it can provide a detailed picture at atomic or near-atomic resolution of the global structure of biological macromolecules such as proteins, nucleic acids and macromolecular assemblies of nearly arbitrary size and complexity. The resolution of the structure of ribosome, which is the most complex particle without internal symmetry ever solved by X-ray crystallography, is a flagship of modern crystallography. The interest of crystallographic results extends also to the pharmaceutical industry. An increasing number of new or potential drugs are based on the knowledge of the 3D structure of a particular protein and systematic studies of protein-inhibitor complexes. Further, a new stage of crystallography is well under way, in the frame of the structural genomics initiatives where all steps are modified or optimised in view of high throughput structure solution. In this respect, craftsman work has evolved towards high tech industrial processes.


Bragg Reflection Diffuse Scattering Diamond Anvil Cell Synchrotron Radiation Source Detective Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miao, J., Hodgson, K.O., Ishikawa, T., Larabell, C.A., LeGros, M.A. & Nishino, Y. (2003) PNAS 100 (1), 110–112.ADSCrossRefGoogle Scholar
  2. 2.
    Helliwell, J.R., Ealick, S., Doing, P., Irving, T., and Szebenyi, M. (1993) Towards the measurement of ideal data for macromolecular crystallography using synchrotron sources, Acta Cryst D49, 120–128.Google Scholar
  3. 3.
    Kundrot, C.E. & Richards, F. M., (1987) Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres, J. Mol. Biol. 193, 157–170.CrossRefGoogle Scholar
  4. 4.
    Kundrot, C.E. and Richards, F.M. (1986) Collection and processing of X-ray diffraction data from protein crystals at high pressure, J. Appl. Cryst. 19, 208–213.CrossRefGoogle Scholar
  5. 5.
    Urayama, P., Phillips, G.N. & Gruner, S.M. (2002) Probing substates in sperm whale myoglobin using high-pressure crystallography, Structure 10, 51–60.CrossRefGoogle Scholar
  6. 6.
    Weir, C.E., Lippincott, E.R., Van Valkenburg, A. & Bunting, E.N. (1959) Infrared studies in the 1-to-15 Micron Region to 30.000 atmospheres. J. Res. Natl. Bur. Stand. 53A. 55–62.Google Scholar
  7. 7.
    Katrusiak, A. and Dauter, Z. (1996) Compressibility of lysozyme protein crystals by X-ray diffraction, Acta Cryst. D52, 607–608.Google Scholar
  8. 8.
    Fourme, R., Kahn, R., Mezouar, M., Girard, E., Hoerentrup, C., Prangé, T. & Ascone, I. (2001) High pressure protein crystallography (HPPX): Instrumentation, methodology and results on lysozyme crystals, J. Synchrotron Rad. 8, 1149–1156.CrossRefGoogle Scholar
  9. 9.
    Fourme, R., Ascone, I., Kahn, R., Mezouar, M., Bouvier, P., Girard, E., Lin, T. & Johnson, J. E. (2002) Opening the high-pressure domain beyond 2 kbar to protein and virus crystallography, Structure 10, 1409–1414.CrossRefGoogle Scholar
  10. 10.
    Chervin, J.C., Canny, B., Besson, J.M., and Pruzan, P. (1995) A diamond anvil cell for IR microspectroscopy, Rev. Sci. Instrum. 66(3), 2595–2598.ADSCrossRefGoogle Scholar
  11. 11.
    Fourme, R. (1968) J. Appl. Cryst. 1, 23–28.CrossRefGoogle Scholar
  12. 12.
    Le Toullec, R., Pinceaux, J.P., and Loubeyre, P. (1988) The membrane diamond anvil cell : a new device for generating continuous pressure and temperature variations, High Pressure Research 1, 77–90.ADSCrossRefGoogle Scholar
  13. 13.
    Van Valkenburg, A. (1962) Visual observations of high pressure transitions. Rev. Sci. Instrum. 33, 1462.ADSCrossRefGoogle Scholar
  14. 14.
    Forman, R.A., Piermarini, G.J., Barnett, J.D., and Block, S. (1972) Pressure measurement made by the utilization of ruby sharp line luminescence, Science 176, 284–285.ADSCrossRefGoogle Scholar
  15. 15.
    Fourme, R., Girard, E., Kahn, R., Ascone, I., Mezouar, M., Dhaussy, A.C., Lin, T., & Johnson, J.E. Results of data acquisition using a quasi-plane wave of ultra short wavelength for high pressure virus crystallography. Possible implications for conventional data collection. (in press)Google Scholar
  16. 16.
    Helliwell, J.R. & Fourme, R. (1983) The ESRF as a Facility for Protein Crystallography: a Report and Design Study. CERN, Geneva, Switzerland.Google Scholar
  17. 17.
    Arndt, U. (1984) Optimum X-ray wavelength for protein crystallography, J. Appl. Cryst. 17, 118–119.CrossRefGoogle Scholar
  18. 18.
    Gonzales, A., Denny, R. & Nave, C. (1994) Acta Cryst. D50, 276–282.Google Scholar
  19. 19.
    Schiltz, M., Kvick, A., Svensson, O.S., Shepard, W., de La Fortelle, E., Prangé, T., Kahn, R., Bricogne, G. & Fourme, R. (1997) J Synchrotron Rad. 4, 287–297.CrossRefGoogle Scholar
  20. 20.
    Fourme, R., Ducruix, A., Ries-Kautt, M. & Capelle, B. (1995) The perfection of protein crystals probed by direct recording of Bragg reflection profiles with a quasi-plane X-ray wave, J. Synchr. Rad. 2, 136–142.CrossRefGoogle Scholar
  21. 21.
    Otwinowski, Z. & Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol. 276, 307–326.CrossRefGoogle Scholar
  22. 22.
    Lin, T., Chen, Z., Usha, R., Harrington, M., Schmidt, T., & Johnson, J.E. (1999) The refined crystal structure of cowpea mosaic virus, Virology 265, 20–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • R. Fourme
    • 1
  • E. Girard
    • 1
  • R. Kahn
    • 2
  • I. Ascone
    • 3
  • M. Mezouar
    • 4
  • T. Lin
    • 5
  • J. E. Johnson
    • 5
  1. 1.Synchrotron SoleilGif sur YvetteFrance
  2. 2.IBSGrenoble cedexFrance
  3. 3.LUREOrsay cedexFrance
  4. 4.ESRFGrenoble cedexFrance
  5. 5.The Scripps Research InstituteLa JollaUSA

Personalised recommendations