Advertisement

Crystallography and Solid State Chemistry at High Pressure

  • P. F. McMillan
Conference paper
Part of the NATO Science Series book series (NAII, volume 140)

Abstract

The field of solid state chemistry is concerned with studies of the properties, structures and reactions of elements and their compounds, that occur as crystals as well as amorphous solids [1]. The subject includes reactions and equilibria established among solids, liquid and fluid phases. It is key to the development and understanding of industrial materials and their processing [2], and it underpins the study of minerals and rock behaviour in geology and planetary sciences [3–5]. Organic solid state chemistry is crucial to determining structure and function in biologically important molecules, and studies of crystalline polymorphism are critically important for development of materials including pharmaceuticals, foodstuffs, explosives and fertilisers [6].

Keywords

Porous Silicon Solid State Chemistry Amorphous Solid Methane Hydrate Icosahedral Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    West, A. R. (1984) Solid State Chemistry and Its Applications. John Wiley and Sons, Chichester, U.K.Google Scholar
  2. 2.
    Rao, C.N.R. and Gopalakrishnan (1986), New Directrons in Solid State Chemistry. Cambridge University Press, Cambridge, U.K.Google Scholar
  3. 3.
    Holloway, J.R. and Wood, B.J. (1988) Simulating the Earth: Experimental Geochemistry. Unwin Hyman, Boston.CrossRefGoogle Scholar
  4. 4.
    Liu L-G. and Bassett W. A. (1986) Elements, Oxides, Silicates: High-Pressure Phases with Implications for the Earth’s Interior, Oxford University Press, New York.Google Scholar
  5. 5.
    Hemley, R.J. (Ed.) (1998) Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior. Rev. Mineral. 37, Mineral. Soc. America, Washington D.C..Google Scholar
  6. 6.
    Bernstein, J (2002) Polymorphism in Molecular Crystals. Oxford University Press, Oxford, U.K..Google Scholar
  7. 7.
    W.L. Bragg and G.F. Claringbull (1965) The Crystolline State. G. Bell, London.Google Scholar
  8. 8.
    W.L. Bragg (1975) The Development of X-ray Analysis. G. Bell and Sons Ltd. Reprinted by Dover Publications (1992), edited by D.C. Philips and H. Lipson.Google Scholar
  9. 9.
    Bacon, G.E. (1975) Neutron Diffraction. Clarendon Press, Oxford, U.K.Google Scholar
  10. 10.
    Zarzycki, J. (1982) Les Verres et l’Etat Vitreux. Masson et Cl, Paris.Google Scholar
  11. 11.
    Elliot, S.R. (1983) Physics of Amorphous Materials. Longman, London.Google Scholar
  12. 12.
    Zallen, R. (1983) The Physics of Amorphous Materials. J. Wiley and Sons, New York.CrossRefGoogle Scholar
  13. 13.
    O’Keeffe, M. and Hyde, B.G. (1996) Crystal Structures. I. Patterns and Symmetry. Mineral. Soc. America, Washington D.C.Google Scholar
  14. 14.
    Steed, J.W. and Atwood, J.L. (2000) Supramolecular Chemistry. John Wiley & Sons, Chichester, U.K.Google Scholar
  15. 15.
    Chomski, E and Ozin, G.A. (2000) Panoscopic silicon — a material for all length scales. Adv. Mater., 12, 1070–1078.CrossRefGoogle Scholar
  16. 16.
    Hemley, R.J. and Ashcroft, N.W. (1998) The revealing role of pressure in the condensed-matter sciences. Physics Today, 51, 26–30.CrossRefGoogle Scholar
  17. 17.
    Hemley, R.J., Chiarotti, G.L., Bernasconi, M. and Ulivi, L. (Eds.) (2002) High Pressure Phenomena, Proc. Int. School Phys. “Enrico Fermi”, Course CXLVII, 105 Press, Amsterdam.Google Scholar
  18. 18.
    Hemley, R.J. and Mao, H.-k. (2002) New windows on earth and planetary interiors, Mineral. Mag., 66, 791–811.CrossRefGoogle Scholar
  19. 19.
    Winter, R. and Jonas, J. (Eds.) (2000) High Pressure Molecular Science. Kluwer Acad. Pub., Dordrecht.Google Scholar
  20. 20.
    McMillan, P.F. (2002) New materials from high pressure experiments. Nature Materials, 1, 19–25.ADSCrossRefGoogle Scholar
  21. 21.
    McMillan, P.F. (2003) New materials from high pressure experiments: Challenges and opportunities. High Pressure Research, 23, 7–22.ADSCrossRefGoogle Scholar
  22. 22.
    Eremets, M. (1996) High Pressure Experimental Methods. Oxford University Press, Oxford, U.K..Google Scholar
  23. 23.
    Holzapfel, W.B. and Isaacs, N.S. (eds.) (1997) High-Pressure Techniques in Chemistry and Physics. Oxford University Press, New York.Google Scholar
  24. 24.
    Hasegawa, M. and Badding, J.V. (1997) Rietveld analysis using a laboratory-based high pressure Xray diffraction system and film-based detection. Rev. Sci. Instr., 68, 2298–2300.ADSCrossRefGoogle Scholar
  25. 25.
    Harris, K.D.M., Tremayne, M. and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew. Chem. Int. Ed., 40, 1626–1651.CrossRefGoogle Scholar
  26. 26.
    Besson, J.-M., Hamel, G., Grima, T., Nelmes, R.J., Loveday, J.S., Hull, S. and Haüsermann D. (1992), A large volume pressure cell for high temperatures. High Pressure Res., 8, 625ADSCrossRefGoogle Scholar
  27. 27.
    Klotz S., Besson J.-M, Braden M., Karch K., Pavone P., Strauch D. and Marshall W.G., (1997) Pressure induced frequency shifts of tansverse acoustic phonons in germanium to 9.7 GPa. Phys. Rev. Lett., 79, 1313–1316.ADSCrossRefGoogle Scholar
  28. 28.
    Nelmes, R.J., Allan, D.R., McMahon, M.I. and Belmonte, S.A. (1999) Self-hosting incommensurate structure of barium IV. Phys. Rev. Lett., 83, 4081–4084.ADSCrossRefGoogle Scholar
  29. 29.
    McMahon, M.I., Degtyareva, O. and Nelmes, R.J. (2000) Ba-IV-type incommensurate crystal structure in group-V metals. Phys. Rev. Leu., 85, 4896–4899.ADSCrossRefGoogle Scholar
  30. 30.
    McMahon M.I., Nelmes R.J., and Rekhi S. (2001) Complex crystal structure of cesium-III. Phys. Rev. Lett., 87, 255502–255506.ADSCrossRefGoogle Scholar
  31. 31.
    McMahon M.I., Rekhi S. and Nelmes R.J. (2001) Pressure dependent incommensuration in Rb-IV. Phys. Rev. Lett., 87, 55501–55505.ADSCrossRefGoogle Scholar
  32. 32.
    Brown, G.E., Jr., Fanges, F. and Calas, G. (1994) X-ray scattering and X-ray spectroscopy studies of silicate melts, in J.F. Stebbins, P.F. McMillan and D.B. Dingwell (eds.), Structure, Dynamics and Properties of Silicate Melts, Mineralogical Society of America, Washington D.C., pp. 1–32Google Scholar
  33. 33.
    Tolbert, S.H., Herhold, A.B., Brus, L.E. and Alivisatos, A.P. (1996) Pressure-induced structural transformations in Si nanocrystals: surface and shape effects. Phys. Rev. Letts. 76, 4384–4387.ADSCrossRefGoogle Scholar
  34. 34.
    Andrianov, A.V., Polisski, G., Morgan, J. and Koch, F. (1999) Inelastic light scattering and X-ray diffraction from thick free-standing porous silicon films. J. Luminescence 80, 193–198.CrossRefGoogle Scholar
  35. 35.
    Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O., Yamakata, M. and Funakohi, K.-I. (2000) A first-order liquid-liquid phase transition in phosphorous. Nature, 403, 170–173.ADSCrossRefGoogle Scholar
  36. 36.
    Crichton, W.A., Mezouar, M., Grande, T., Stolen, S. and Grzechnik, A. (2001) Breakdown of intermediate-range order in liquid GeSe2 at high pressure. Nature, 414, 622–625.ADSCrossRefGoogle Scholar
  37. 37.
    Weidner DJ (1998) Rheological studies at high pressure, in R.J. Hemley (ed.), Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior, Mineralogical Society of America, Washington D.C., pp. 493–524.Google Scholar
  38. 38.
    Struzhkin, V.V., Hemley, R.J., Mao, H.-k. and Timofeev, Y.A, (1997) Superconductivity at 10–17 K in compressed sulphur. Nature, 390, 382–383.ADSCrossRefGoogle Scholar
  39. 39.
    Shimizu, K. et al., Superconductivity in the nonmagnetic state of iron under pressure. Nature, 412, 316–318 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    Eremets, M.I. et al., Electrical conductivity of Xe at megabar pressures. Phys. Rev. Letts., 83, 2797–2800 (2001).Google Scholar
  41. 41.
    Velisavljevic, N., Chesnut, G.N., Votera, Y.K., Weir, S.T., Malba, V. and Akella, J. (2002) Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils. Phys. Rev. B, 65, 172107–172200 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Jackson, D.D., Aracne-Ruddle, C., Malba, V., Weir, S.T., Catledge, S.A. and Vohs, Y.K. (2003) Magnetic susceptibility measurements at high pressure using designer diamond anvils, Rev. Sci. Instr., 74, 2467–2471.ADSCrossRefGoogle Scholar
  43. 43.
    Lavoisier, A. (1789) Traité élémentaire de Chimie. Published in English translation (R. Kerr) as Elements of Chemistry (Edinburgh, 1790): reprinted by Dover Publications Inc., New York, 1965.Google Scholar
  44. 44.
    Ihde, A.J. (1984) The Development of Modern Chemistry. Harper and Row, New York, 1964: Reprinted by Dover Press.Google Scholar
  45. 45.
    McMillan, P.F. (2003) Chemistry of materials under extreme high pressure-high temperature conditions. Chem. Comm., 919–923Google Scholar
  46. 46.
    McMillan, P.F. (2003) Condensed matter chemistry under “extreme” high pressure-high temperature conditions. High Pressure Res., in pressGoogle Scholar
  47. 47.
    Sung, C.-M. and Tai, M.-F. (1997) Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure. Int. J. Refractory Metals and Hard Materials, 15, 237–256CrossRefGoogle Scholar
  48. 48.
    Solozhenko, V.L., Turkevich, V.Z., Kurakevych, O.O., Crichton, W.A. and Mezouar, M. (2002) Kinetics of diamond crystallization from the melt of the Fe-Ni-C system, J. Phys. Chem. B, 106, 6634–6637.CrossRefGoogle Scholar
  49. 49.
    Solozhenko, V.L. (2002) Synchrotron radiation studies of the kinetics of cBN crystallization in the NH4F BN system, Phys. Chem. Chem. Phys., 4, 1033–1035.CrossRefGoogle Scholar
  50. 50.
    Tonkov, E.Y. (Ed.) (1992) High Pressure Phase Transformations (vols. 1–3). Gordon and Breach, Philadelphia.Google Scholar
  51. 51.
    Krukowski, S., Bockowski, M., Lucznik, B., Grzegory, I., Porowski, S., Suski, T. and Romanowski, Z. (2001) High-nitrogen-pressure growth of GaN single crystals: doping and physical properties. J. Phys. Cond. Matter, 13, 8881–8890.ADSCrossRefGoogle Scholar
  52. 52.
    McMillan, P.F. (2002) Solid state chemistry at high pressure and high temperature. In “High Pressure Phenomena”, Proc. Int. School of Physics “ Enrico Fermi”, Course CXLVII, ed. Hemley RJ, Chiarotti GL, Bernasconi M, Ulivi L,. IOS Press, Amsterdam. pp. 477–507.Google Scholar
  53. 53.
    Monaco, G., Falconi, S., Crichton, W.A. and Mezouar, M. (2003) Nature of the first-order phase transition in fluid phosphorous at high temperature and pressure, Phys. Rev. Lett., 255701–255705.Google Scholar
  54. 54.
    Liebau, F. (1985) Structural chemistry of Silicates: Structure, Bonding, and Classification. SpringerVerlag, New York.CrossRefGoogle Scholar
  55. 55.
    Heaney, P.J., Prewitt, C.T. and Gibbs, G.V. (eds.) (1994) Silica. Physical Behavior, Geochemistry and Materials Applications. Mineralogical Society of America, Washington D.C.Google Scholar
  56. 56.
    Stishov, S.M. and Popova, S.V. (1961) A new dense modification of silica. Geochemistry, 10, 837–839Google Scholar
  57. 57.
    Stishov, S.M. (1995) Memoir on the discovery of high-density silica. High Pressure Res., 13, 245–280ADSCrossRefGoogle Scholar
  58. 58.
    Liu, L.-G. (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys. Res. Lett., 1, 277ADSCrossRefGoogle Scholar
  59. 59.
    Knittle, E. and Jeanloz, R. (1987) Synthesis and equation of state of (Mg,Fe)SiO3 perovskite to over 100 Gigapascals. Science, 235, 668ADSCrossRefGoogle Scholar
  60. 60.
    Hemley, R.J. and Cohen, RE. (1992) Silicate perovskite. Ann. Rev. Earth Planet. Sci. 20, 553–600.ADSCrossRefGoogle Scholar
  61. 61.
    Brenker, F.E., Stachel, T. and Harris, J.W. (2002) Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution. Earth Planet. Sci. Len., 198, 1–9.ADSCrossRefGoogle Scholar
  62. 62.
    Hemmati, M., Chizmeshya, A., Wolf, G.H., Poole, P.H., Shao, J. and Angell, C.A. (1995) Crystallineamorphous transition in silicate perovskites. Phys. Rev. B, 51, 14,841–14,848.CrossRefGoogle Scholar
  63. 63.
    Chizmeshya, A.V.G., Wolf, G.H. and McMillan, P.F. (1996) First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite. Geophys. Res. Len. 23, 2725–2728.ADSCrossRefGoogle Scholar
  64. 64.
    Grzechnik, A., Chizmeshya, A.V.G., Wolf, G.H. and McMillan, P.F. (1998) An experimental and theoretical investigation of phonons and lattice instabilities in metastable decompressed SrGeO3 perovskite. J. Phys. Condensed Matter, 10, 221–233.ADSCrossRefGoogle Scholar
  65. 65.
    Grzechnik, A., Hubert, H., McMillan, P.F. and Petuskey, W.T. (1997) SrGeO3-Sr TiO3 perovskites: high pressure synthesis, structure, and dielectric properties. Integrated Ferroelectrics 15, 191–198.CrossRefGoogle Scholar
  66. 66.
    Grzechnik, A., McMillan, P.F., Chamberlain, R., Hubert, H. and Chizmeshya, A.V.G. (1997) SrTiO3SrGeO3 perovskites obtained at high pressure and high temperature. Eur. J. Solid State Inorg. Chem. 34, 269–281.Google Scholar
  67. 67.
    Clarke, S.J., Guinot, B.P., Michie, C.W., Calmont, M.J.C. and Rosseinsky, M.J. (2002) Chem. Mater., 14, 288–294.CrossRefGoogle Scholar
  68. 68.
    Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, E., Riedel, R, Fueß, H. Kroll, P. and Boehler, R. (1999) Synthesis of cubic silicon nitride. Nature, 400, 340–342.ADSCrossRefGoogle Scholar
  69. 69.
    Leinenweber, K., O’Keeffe, M., Somayazulu, M., Hubert, H., McMillan, P.F. and Wolf, G.H. (1999) Synthesis and structure refinement of the spinel, γ-Ge3 N4. Chem. Eur. J., 5, 3076 .CrossRefGoogle Scholar
  70. 70.
    Serghiou, G., Miehe, G., Tschauner, O., Zerr, A. and Boehler, R. (1999) Synthesis of a cubic Ge3 N 4 phase at high pressures and temperatures. J. Chem. Phys., 111, 4659.ADSCrossRefGoogle Scholar
  71. 71.
    Scotti, N., Senker, J., Trassel, St. and Jacobs, H. (1999) Sn3N4, ein Zinn (IV)-nitrid — Synthese und erste Strukturbestimmung einer binären Zinn-Stickstoff-Verbindung. Z Anorg Allg Chem 625 1435–1439CrossRefGoogle Scholar
  72. 72.
    Sekine, T., Jiang, J.Z., Kragh, F., Frost, D.J., Stahl, K. and Lindelov, H. (2001) Hardness and thermal stability of cubic silicon nitride. J. Phys. Cond. Mat., 13, L515–520.CrossRefGoogle Scholar
  73. 73.
    Zerr, A., Kempf, M., Kroke, E., Göken, M. and Riedel, R. (2002) Elastic moduli and hardness of cubic silicon nitride. J. Am. Ceram. Soc., 85, 86–90.CrossRefGoogle Scholar
  74. 74.
    Dong, J., Sankey, O.K., Deb, S.K., Wolf, G.H. and McMillan, P.F. (2000) Theoretical study of ß-Ge3 N 4 and its high pressure spinel y-phase. Phys. Rev. B, 61, 11979–11992.ADSCrossRefGoogle Scholar
  75. 75.
    Dong, J., Deslippe, J., Sankey, O.F., Soignard, E. and McMillan, P.F. (2003) Theoretical study of the ternary spinel nitride system Si3N4-Ge.3N4. Phys. Rev. B, 67, 94–104.Google Scholar
  76. 76.
    Soignard, E., Somayazulu, M., Mao, H.-k., Dong, J., Sankey, O.F. and McMillan, P.F. (2001) High pressure-high temperature investigation of nitride spinels in the system Si3N4-Ge3 N4. Solid State Comm., 120, 237–242.ADSCrossRefGoogle Scholar
  77. 77.
    Riedel, R. (ed.) (2000) Handbook of Hard Ceramic Materials (2 vols.). Wiley VCH, New York.Google Scholar
  78. 78.
    Hazen, R.M. (1999) The Diamond Makers. Cambridge University Press.Google Scholar
  79. 79.
    Solozhenko, V.L., Dub, S.N. and Novikov, N. (2001) Mechanical properties of cubic BC2N, a new superhard phase. Diamond and Related Materials, 10, 2228–2231.ADSCrossRefGoogle Scholar
  80. 80.
    Solozhenko, V.L. (2002) Synthesis of novel superhard phases in the B-C-N system, High Pressure Res., 22, 519–524.ADSCrossRefGoogle Scholar
  81. 81.
    Teter, D. and Hemley, R.J. (1996) Low-compressibility carbon nitrides. Science, 271, 53–55.ADSCrossRefGoogle Scholar
  82. 82.
    Malkow, T. (2001) Critical observations in the research of carbon nitride. Mat. Sci. Eng. A, 302, 309–324.CrossRefGoogle Scholar
  83. 83.
    Zhang, Z., Leinenweber, K.L., Bauer, M., Garvie, L.A.J., McMillan, P.F. and Wolf, G.H. (2001) Highpressure bulk synthesis of crystalline C6N9H3.HCl: a novel C3N4 graphitic derivative. J. Am. Chem. Soc, 123, 7788–7796.CrossRefGoogle Scholar
  84. 84.
    Landskron, K., Huppertz, H., Senker, J. and Schnick, W. (2001) High-pressure synthesis of y-P3 N5 at 11 GPa and 1500°C in a multianvil assembly: a binary phosphorus (V) nntride with a three-dimensional network structure from PN4 tetrahedra and tetragonal PN5 pyramids. Angew. Chem. Int. Ed., 40, 2643–2645.CrossRefGoogle Scholar
  85. 85.
    Dong, J., Kinkhabwala, A.A. and McMillan, P.F. (2003) High pressure polymorphism in phosphorous nitrides. Phys. Rev. B, in press.Google Scholar
  86. 86.
    Kauzlarich, S. M. (ed.) (1996) Chemistry, Structure, and Bonding of Zintl Phases and Ions, VCH Press, New York.Google Scholar
  87. 87.
    Cros, C., Pouchard M. and Hagenmuller, P. (1970) Sur une nouvelle famille de clathrates minéraux isotypes des hydrates de gaz et de liquides. J. Solid State Chem. 2, 570ADSCrossRefGoogle Scholar
  88. 88.
    Ramachandran, G.K., Dong, J., Diefenbacher, J., Gryko, J., Marzke, R.F., Sankey, O.F. and McMillan, P.F. (1999) Synthesis and X-ray characterization of silicon clathrates. J. Solid State Chem., 145, 716.ADSCrossRefGoogle Scholar
  89. 89.
    Bobev, S. and Sevov, S.C. (2000) Clathrates of group 14 with alkali metals: an exploration. J. Solid State Chem. 153, 92–105.ADSCrossRefGoogle Scholar
  90. 90.
    Taylor, B.R., Kauzlarich, S.M., Delgado, G.R. and Lee, H.W.H. (1999) Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater., 11, 2493–2500.CrossRefGoogle Scholar
  91. 91.
    Yang, C.-S., Kauzlarich, S.M and Wang, Y.C. (1999) Synthesis and characterization of gennanium/Sialkyl and germanium/silica core-shell quantum dots. . Chem. Mater., 11, 3666–3670.CrossRefGoogle Scholar
  92. 92.
    Nagamatsu, J. (2001) Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64. 93. Imai, M. (1998) Phase transitions of BaSiz at high pressures and high temperatures. Phys. Rev. B, 58, 11922–11926.Google Scholar
  93. 94.
    Evers, J., Oehlinger, G. and Sextl, G. (1993) High-pressure synthesis of LiSi — 3-dimensional network of 3-bonded Si- ions. Angew. Chem. Int. Ed. Engl. 32, 1442–1444.CrossRefGoogle Scholar
  94. 95.
    Evers, J., Oehlinger, G. and Sextl, G. (1997) LiSi, a unique Zintl phase — although stable, it long evaded synthesis. Eur. J. Solid State Inorg. Chem. 34, 773–784.Google Scholar
  95. 96.
    Stearns, L.A., Gryko, J., Diefenbacher, J., Ramachandran, G.K. and McMillan, P.F. (2003) Synthesis and characterization of lithium monosilicide (LiSi), a low-dimensional silicon-based material. J. Solid State Chem., 173, 251–258.ADSCrossRefGoogle Scholar
  96. 97.
    Wells, A.F. (1984) Structural Inorganic Chemistry. Oxford Univ. Press.Google Scholar
  97. 98.
    Léger, J.M. and Haines, J. (1999) Crystal structure and high pressure behaviour of the quartz-type phase of phosphorus oxynitride PON. J. Phys. Chem. Solids, 60, 145–152.CrossRefGoogle Scholar
  98. 99.
    Léger, J.M. and Haines, J. (2000) High-pressure X-ray investigation of the moganite- and quartz-type phases of phosphorous oxynitride. J. Phys. Chem. Solids, 61, 1447–1453.ADSCrossRefGoogle Scholar
  99. 100.
    Kingma, K.J., Pacalo, R.E.G. and McMillan, P.F. (1997) High-pressure stability of the cristobalite framework in PON and PN(NH). Eur. J. Solid State Inorg. Chem. 34, 679–692.Google Scholar
  100. 101.
    Léger, J.M. and Haines, J. (1997) Crystal chemistry of the AXA compounds under pressure. Eur. J. Solid State Inorg. Chem. 34, 785–796.Google Scholar
  101. 102.
    Polian, A., Itié, J.-P., Grimsditch, M., Badro, J. and Philippot, E. (1997) Berlinites under pressure. Eur. J. Solid State Inorg. Chem. 34, 669–678.Google Scholar
  102. 103.
    Kroll, P. (2003) pers. commun.Google Scholar
  103. 104.
    Tse, J., Klug, D.D., Uehara, K., Li, Z., Haines, J. and Léger, J.M. (2000) Elastic properties of potential superhard phases of RuO2. Phys. Rev. B, 61, 10029–10034.ADSCrossRefGoogle Scholar
  104. 105.
    Lundin, U., Fast, L, Nordström, L, Johansson, B., Wills, J.M. and Eriksson, O. (1998) Transitionmetal dioxides with a bulk modulus comparable to diamond. Phys. Rev. B, 57, 4979–4982.ADSCrossRefGoogle Scholar
  105. 106.
    Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., Muscat, J., Harrison, N.M., Ahuja, R., Holm, B. and Johansson, B. (2001) The hardest known oxide. Nature, 410, 653–652.ADSCrossRefGoogle Scholar
  106. 107.
    Davy, H. (1811) On a combination of oxymuriatic gas and oxygene gas. Phil. Trans. Royal Soc. London 101, 155–162.CrossRefGoogle Scholar
  107. 108.
    Faraday, M. (1823) On hydrate of chlorine. Quarterly J. Sci. 15, 71–74.Google Scholar
  108. 109.
    Claussen, WF (1951) A second water structure for inert gas hydrates. J. Chem. Phys. 19, 1425–1426.ADSCrossRefGoogle Scholar
  109. 110.
    Pauling L. and Marsh, RE. (1952) The structure of the chlorine hydrate. Proc. Natl. Acad. Sci. USA 36, 112–118.ADSCrossRefGoogle Scholar
  110. 111.
    Hirai, H., Kondo, T., Hasegawa, M., Yagi, T., Yamamoto, Y., Komai, T., Nagashima, K., Sakashita, M., Fujihisa, H. and Aoki, K. (2000) Methane hydrate behavior under high pressure. J. Phys. Chem. B, 104, 1429–1433.CrossRefGoogle Scholar
  111. 112.
    Chou, I.M. (2001) Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range. J. Phys. Chem. A, 105, 4664–4668.CrossRefGoogle Scholar
  112. 113.
    Sanloup, C., Mao, H.-k. and Hemley, R.J. (2002) High-pressure transformations in xenon hydrates. Proc. Nat. Acad. Sci. USA, 99, 25–28.ADSCrossRefGoogle Scholar
  113. 114.
    Loveday, J.S., Nelmes, R.J., Guthrie, M., Klug, D.D., Tse, J.S. and Handa, Y.P. (2001) Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric Methane. Nature, 410, 661–663.ADSCrossRefGoogle Scholar
  114. 115.
    Loveday, J.S. and Nelmes, R.J. (2003) High-pressure neutron diffraction and models of Titan. High Pressure Res., 23, 41–47.ADSCrossRefGoogle Scholar
  115. 116.
    Yamanaka, S., Enishi, E. , Fukuoka, H. and Yasukawa, M. (2000) High-pressure synthesis of a new silicon clathrate superconductor, BasSi46. Inorg. Chem. 39, 56–58.CrossRefGoogle Scholar
  116. 117.
    Kawaji, H., Hode, H.-O., Yamanaka, S. and Ishikawa, M. (1995) Superconductivity in the silicon clathrate compound (Na,Ba) Si46. Phys. Rev. Lett. 74, 1427–1429ADSCrossRefGoogle Scholar
  117. 118.
    Herrmann, R.F.W., Taniga Ci, K., Kuroshima, S. and Suematsu, H. (1998) Superconductivity in silicon based barium-inclusion clathrates. Chem. Phys. Lett. 283, 29.ADSCrossRefGoogle Scholar
  118. 119.
    Bundy, F.P. and Kasper, J.S. (1970) Electrical behaviour of sodium-silicon clathrates at very high pressure. High Temp.-High Press., 2, 429–435.Google Scholar
  119. 120.
    Gryko, J., McMillan, P.F., Marzke, R.F., Ramachandran, G.K., Patton, D., Deb, S.K., and Sankey, O.F. (2000) A low-density form of crystalline silicon with a wide optical bandgap. Phys. Rev. B, 62, 8770–7710.CrossRefGoogle Scholar
  120. 121.
    Nolas, G.S., Beekman, M., Gryko, J., Lamberton, G., Tritt, T.M. and McMillan, P.F. (2003) Thermal conductivity of the elemental crystalline silicon clathrate Si136 Appl. Phys. Lett., 82, 910–912.ADSCrossRefGoogle Scholar
  121. 122.
    Ramachandran, G.K., McMillan, P.F., Deb, S.K., Somayazulu, M., Gryko, J., Dong, J. and Sankey, O.F. (2000) High-pressure phase transformation of the silicon clathrate Si136. J. Phys. Cond. Mat., 12, 4013–4020.ADSCrossRefGoogle Scholar
  122. 123.
    Wentorf, R.Jr. (1957) Cubic form of boron nitride, J. Chem. Phys., 26, 956–956.ADSCrossRefGoogle Scholar
  123. 124.
    Hall, H.T. and Compton, L.A. (1965) Group IV analogs and high pressure, high temperature synthesis of B20. Inorg. Chem., 4, 1213–1216.CrossRefGoogle Scholar
  124. 125.
    Endo, T., Sato, T. and Shimida, M. (1987) High-pressure synthesis of B20 with diamond-like structure. J. Mat. Sci. Lett., 6, 683–685.CrossRefGoogle Scholar
  125. 126.
    Hubert, H., Garvie, L.A.J., Leinenweber, K., Buseck, P., Petuskey, W.T. and McMillan, P.F. (1996) High pressure, high temperature synthesis of superhard boron suboxide. MRS. Symp.:410, 191.CrossRefGoogle Scholar
  126. 127.
    Hubert, H., Garvie, L.A.J., Devouard, B., Buseck, P.R., Petuskey, W.T. and McMillan, P.F. (1998) High-pressure, high-temperature synthesis and characterization of boron suboxide (B6O). Chem. Mat. 10, 1530–1537,CrossRefGoogle Scholar
  127. 128.
    McMillan, P.F., Hubert, H., Chizmeshya, A., Garvie, L.A.J., Petuskey, W.T. and Devouard, B. (1999) Nucleation and growth of icosahedral boron suboxide clusters at high pressure. J. Solid State Chem., 147, 281–290.ADSCrossRefGoogle Scholar
  128. 129.
    Hubert, H., Devouard, B., Garvie, L.A.J., O’Keeffe, M., Buseck, P.R., Petuskey, W.T. and McMillan, P.F. (1998) Icosahedral packing of B12 icosahedra in boron suboxide (B60). Nature 391, 376–378.ADSCrossRefGoogle Scholar
  129. 130.
    Rapoport, E. (1967) Model for melting curve maxima at high pressure. J. Chem. Phys. 46, 2891–2894.ADSCrossRefGoogle Scholar
  130. 131.
    Rapoport, E. (1968) Model for melting curve maxima at high pressure. II. Liquid Cesium, resistivity, Hall effect and composition of molten tellurium. J. Chem. Phys. 48, 2891–2894.CrossRefGoogle Scholar
  131. 132.
    Guggenheim, E.A. (1933) Modern Thermodynamics by the Methods of Willard Gibbs. Methuen & Co., London.Google Scholar
  132. 133.
    Poole, P.H., Grande, T., Angell, C.A. and McMillan, P.F. (1997) Polymorphic phase transitions in liquids and glasses. Science 275, 322–323.CrossRefGoogle Scholar
  133. 134.
    McMillan, P.F. (2002) Liquid state polymorphism. In “High Pressure Phenomena”, Proc. Int. School of Physics “ Enrico Fermi”, Course CXLVII, ed. Hemley R I, Chiarotti GL, Bernasconi M, Ulivi L,. IOS Press, Amsterdam. pp. 511–543.Google Scholar
  134. 135.
    Aasland, S. and McMillan, P.F. (1994) Density-driven liquid-liquid phase separation in the system Al2O3-Y203. Nature, 369, 633–636.ADSCrossRefGoogle Scholar
  135. 136.
    Wilding, M.C. and McMillan, P.F. (2001) Polyamorphic transitions in yttria-alumina liquids. J. Non Cryst. Solids, 293, 357–366.ADSCrossRefGoogle Scholar
  136. 137.
    Wilding, M.C., Benmore, C. and McMillan, P.F. (2002) A neutron diffraction study of yttrium- and lanthanum-aluminate glasses. J Non-Cryst Solids, 297, 143–155.ADSCrossRefGoogle Scholar
  137. 138.
    Wilding, M.C., McMillan, P.F. and Navrotsky, A. (2002) A calorimetric study of liquids in the polyamorphic system Y203-Al2O3. J Phys Chem Glasses, 43, 306–312.Google Scholar
  138. 139.
    Wilding, M.C., McMillan, P.F. and Navrotsky, A. (2002) Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Physica A, 314, 379–390.ADSCrossRefGoogle Scholar
  139. 140.
    McMillan, P.F., Wilson, M., and Wilding, M.C. (2003) Polyamorphism in aluminate liquids. J. Phys. Cond. Matter, 15, 6105–6121.ADSCrossRefGoogle Scholar
  140. 141.
    Wolf, G. H., Wang, S., Herbst, C. A., Durben, D. J., Oliver, W. F., Kang, Z. C. and Halvorson, K. (1992) Pressure induced collapse of the tetrahedral framework in crystalline and amorphous GeO2. In: High-Pressure Research: Application to Earth and Planetary Sciences, ed. M. Manghnani & Y. Syono, p 503–517. Am. Geophys. Union, Washington D.C.CrossRefGoogle Scholar
  141. 142.
    Mishima, O., Calvert, L. D. and Whalley, E. (1985) An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature, 314, 76–78.ADSCrossRefGoogle Scholar
  142. 143.
    Mishima, O. and Stanley, H.E. (1998) The relationship between liquid, supercooled and glassy water. Nature, 396, 329–335.ADSCrossRefGoogle Scholar
  143. 144.
    Angell, C. A. (1995) Formation of glasses from liquids and biopolymers. Science, 267, 1924–1935.ADSCrossRefGoogle Scholar
  144. 145.
    Meade, C., Hsnley, R.J. and Mao, H.-k. (1992) High pressure x-ray diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387–1390.ADSCrossRefGoogle Scholar
  145. 146.
    Brazhkin, V. V., Popova, S. V., Voloshin, R. N. (1997) High-pressure transformations in simple melts. High Pressure Res. 15, 267–305.ADSCrossRefGoogle Scholar
  146. 147.
    Moynihan, C. T. and Angell, C. A. (2000) Bond lattice excitation model analysis of the configurational entropy of molecular liquids. J. Non-Cryst. Solids, 274, 131–138.ADSCrossRefGoogle Scholar
  147. 148.
    Moynihan, C. T. and Angell C. A. (2000) Ideal and cooperative bond lattice representations of excitations in glass-forming liquids: excitation profiles, fragilities and phase transitions. Metall. Mater. Trans. B, 31, 587–588.CrossRefGoogle Scholar
  148. 149.
    McMillan, P.F. (2000) Phase transitions: Jumping between liquid states. Nature, 403, 151–152.ADSCrossRefGoogle Scholar
  149. 150.
    Ponyatovsky, E. G. and Barkalov, O. I. (1992) Pressure-induced amorphous phases. Mater. Sci. Reports, 8, 147–191.CrossRefGoogle Scholar
  150. 151.
    Angell, C.A. and Wang, L.-M. (2003) Hyperquenching and cold equilibration strategies for the study liquid-liquid and protein folding transitions. Biphys. Chem., in press.Google Scholar
  151. 152.
    Hill, T. L. (1994) Thermodynamics of Small Systems. Dover Press, New York.Google Scholar
  152. 153.
    Chamberlin, R.V., (2002). In Liquid Dynamics. Experiment, Simulation and Theory. ACS Symposium Series 820, p. 228CrossRefGoogle Scholar
  153. 154.
    Hill, T. L. and Chamberlin, R.V. (1998). Extension of the thermodynamics of small systems to open metastable states: an example. Proc. Natl. Acad. Sci. USA, 95, 12779–12782.ADSCrossRefGoogle Scholar
  154. 155.
    Brus, L. (1994) Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon. J. Phys. Chem., 98, 3575–3581.CrossRefGoogle Scholar
  155. 156.
    Canham, L.T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett., 57, 1046–1048.ADSCrossRefGoogle Scholar
  156. 157.
    Collins, R.T., Fauchet, P.M. and Tischler, M.A. (1997) Porous silicon: from luminescence to LEDs. Phys. Today, January, 24–31.Google Scholar
  157. 158.
    Alivisatos, A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937ADSCrossRefGoogle Scholar
  158. 159.
    Alivisatos, A.P. (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., 100, 13226–13239.CrossRefGoogle Scholar
  159. 160.
    Goldstein, A.N., Echer, C.M. and Alivisatos, A.P. (1992) Melting in semiconductor nanocrystals, Science, 256, 1425–1428.ADSCrossRefGoogle Scholar
  160. 161.
    Lai, S. L., Guo, J.Y., Petrova, V., Ramanath, G. and Allen, L.H. (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102.ADSCrossRefGoogle Scholar
  161. 162.
    Tolbert, S.H., Herhold, A.B., Brus, L.E. and Alivisatos, A.P. (1996) Pressure-induced structural transformations in Si nanocrystals: surface and shape effects. Phys. Rev. Lett. 76, 4384–4387.ADSCrossRefGoogle Scholar
  162. 163.
    Zeman, J., Zigone, M., Rikken, G. and G. Martinez (1995) Hydrostatic pressure effects on the porous silicon luminescence. J. Phys. Chem. Solids 56, 655–661.ADSCrossRefGoogle Scholar
  163. 164.
    Papadimitriou, D., Raptis, Y.S., Nassiopoulou, A.G. and Kaltsas, G. (1998) Porous silicon of variable porosity under high hydrostatic pressure: Raman and luminescence studies. Phys. star. sol. (a) 165, 43–48ADSCrossRefGoogle Scholar
  164. 165.
    Papadimitriou, D., Raptis, Y.S. and Nassiopoulou, A.G (1998) High-pressure studies of photoluminescence in porous silicon. Phys. Rev. B58, 14089–14093.ADSGoogle Scholar
  165. 166.
    Deb, S.K., Wilding, M.C., Somayazulu, M. and McMillan, P.F. (2001) Pressure-induced amorphisation and an amorphous-amorphous transition in densified porous silicon. Nature, 414, 528–530.ADSCrossRefGoogle Scholar
  166. 167.
    Bellet, D. and Dolino, G. (1996) X-ray diffraction studies of porous silicon. Thin Solid Films 276, 1–6.ADSCrossRefGoogle Scholar
  167. 168.
    Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J. and Endo, H. (1974) Pressure-induced semiconductor-metal transitions in amorphous Si and Ge. Phil. Mag. 29, 547–558.ADSCrossRefGoogle Scholar
  168. 169.
    Imai, M., Mitamura, M., Yaoita, K. and Tsuji, K. (1996) Pressure-induced phase transition of crystalline and amorphous silicon and germanium at low temperatures High Pres. Res. 15, 167–189.ADSCrossRefGoogle Scholar
  169. 170.
    Wilson, M and McMillan, P.F. (2003) Crystal-liquid phase relations in silicon at negative pressure. Phys. Rev. Lett., 90, 135703–135707.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • P. F. McMillan
    • 1
    • 2
  1. 1.Department of Chemistry, Christopher Ingold LaboratoriesUniversity College LondonLondonUK
  2. 2.Davy-Faraday Research LaboratoryRoyal Institution of Great BritainLondonUK

Personalised recommendations