Reverse Monte Carlo Modelling of Diffraction Data : Structural Studies of Amorphous Ices

  • L. Pusztai
Conference paper
Part of the NATO Science Series book series (NAII, volume 140)


During the first of the two lectures, the Reverse Monte Carlo (RMC) technique, a method for modelling the structure of disordered materials, is introduced. Generalities concerning the application of RMC for molecular systems are discussed and then, the use of RMC for modelling structural disorder in crystals is mentioned. The second lecture will be devoted to the analyses of the structure of amorphous ices: the application of the Reverse Monte Carlo method in this respect will be shown in detail, together with a general discussion of diffraction results that have appeared very recently.


Liquid Water Structural Disorder Pair Correlation Function Coordination Shell Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansen, J.-P., McDonald, I.R. (1986) The theory of smile liauids Academic Press, LondonGoogle Scholar
  2. 2.
    Pusztai, L., McGreevy, R.L. (1999) MCGR: an inverse method for deriving the pair correlation function, J. Neutron Research 8, 17–35.CrossRefGoogle Scholar
  3. 3.
    Pusztai, L., McGreevy, R.L. (1998) The structure of molten CuBr, J. Phys. . Cond. Matter 10. 525–532.ADSCrossRefGoogle Scholar
  4. 4.
    Egelstaff, P.A., Page, D.I., Powles, J. G. (1971) Orientational correlations in molecular liquids by neutron scattering. Carbon tetrachloride and germanium tetrabromide, Mol. Phys. 20. 881–894.ADSCrossRefGoogle Scholar
  5. 5.
    Enderby J.E., North D.N., Egelstaff P.A. (1966) The partial structure factors of liquid Cu-Sn, Phil Mfag. 14, 961–970.ADSCrossRefGoogle Scholar
  6. 6.
    McGreevy, R.L., Pusztai, L. (1988) Reverse Monte Carlo simulation: a new technique for the determination of disordered structures, Molec. Simul 1, 359–367.CrossRefGoogle Scholar
  7. 7.
    Pusztai, L. (1998) Structural modelling using the reverse Monte Carlo technique: Application to amorphous semiconductors J. Non-Cryst. Sot 227–230, 88–95; McGreevy, R.L. (2001) Reverse Monte Carlo modelling, J. Phys. Cond. Matter 13, R877-R913.Google Scholar
  8. 8.
    Pusztai, L., McGreevy, R.L. (1997) The structure of liauid CCIL, Mol Phys. 90, 533–54ADSCrossRefGoogle Scholar
  9. 9.
    Pusztai, L., McGreevy, R.L. (1997) RMC: introduction of a new type of constraint for molecular systems and network glasses, Studsvik NFL Annual Report for 1996, OTH :21.Google Scholar
  10. 10.
    Jóvári, P., Mészáros, Gy., Pusztai, L., Sváb, E. (2001) The structure of liquid tetrachlorides CCl4, SiCl4, GeCl4, TiCl4, VCl4 and SnCl4, J. Chem. Phys. 114, 8082–8090.ADSCrossRefGoogle Scholar
  11. 11.
    Evrard, G. (2003) The RMC++ software (private communication)Google Scholar
  12. 12.
    Soper A.K., Bruni F., Ricci M.A. (1997) Site-site correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data, J. Chem. Phys 106, 247–254.ADSCrossRefGoogle Scholar
  13. 13.
    Howe, M.A., McGreevy, R.L. (1991) Determination of three body correlations in liquids by RMC modelling of diffraction data. I. Theoretical tests, Phys. Chem. Lig. 24, 1–12.Google Scholar
  14. 14.
    Gereben, O. and L Pusztai, L. (1994) Structure of amorphous semiconductors: Reverse Monte Carlo studies on a-Ca-Si and a-Ge. Phys. Rev. B. 50, 14136–14143.ADSCrossRefGoogle Scholar
  15. 15.
    Pusztai, L. (1999) On the partial pair correlation functions of liquid water, Phys. Rev. B 60, 11851–11854.ADSCrossRefGoogle Scholar
  16. 16.
    Pusztai, L. (2000) On the structure of high and low density amorphous ice, Phys. Rev. B61, 28–31.ADSCrossRefGoogle Scholar
  17. 17.
    Pusztai, L., Gereben, O., Baranyai, A. (1994) Some remarks on the measured structure factor, Physica Scripta, T57, 69–71.Google Scholar
  18. 18.
    Keen, D.A., W. Hayes, McGreevy, R.L. (1990) Structural disorder in AgBr on the approach to melting, J. Phys. Cond. Matt 2, 2773–2786.ADSCrossRefGoogle Scholar
  19. 19.
    Montfrooij, W., McGreevy, R.L., Hadfield, R.A., Andersen, N.-H. (1996) Reverse Monte Carlo analysis of powder patterns, J. Appt. Cryst 29, 285–290.CrossRefGoogle Scholar
  20. 20.
    Mellergård, A., McGreevy, R.L. (1999) Reverse Monte Carlo modelling of neutron powder diffraction data, AActa Cpyst. A55, 783–789.Google Scholar
  21. 21.
    Mellergård, A., McGreevy, R.L. (1998) Modelling of lattice and magnetic disorder in manganese oxide, JPhys . Cond. Matter 10, 9401–9412.ADSCrossRefGoogle Scholar
  22. 22.
    Mellergård, A., McGreevy, R.L. (2000) Structural and magnetic disorder in Lal. SrxMnO3, J. Phys. Cond. Macter 12, 4975–4991.CrossRefGoogle Scholar
  23. 23.
    Mellergård, A., Mondelli, C., H. Mutka, H., McGreevy, R.L., Payen, C. (2002) Spin configurations in a kagome based frustrated antiferromagnet: analysis of dynamic disorder by the reverse Monte-Carlo method, Appl. Phys. A74, S883-S885.CrossRefGoogle Scholar
  24. 24.
    Keen, D.A., Nield, V.M., McGreevy, R.L. (1994) Diffuse neutron scattering from an in situ grown aAgl single crystal, J Apl. Cryst. 27, 393–398.CrossRefGoogle Scholar
  25. 25.
    Burton, E.F., Oliver, W.F. (1936) The crystal structure of ice at low temperatures, Proc. Roy. Soc. London Ser. ,1 153, 166–171.CrossRefGoogle Scholar
  26. 26.
    Narten, A.H., Venkatesh, C.G., Rice, S.A. (1976) Diffraction pattern and structure of amorphous solid water at 10 and 77 K, J. Chem. Phys. 64, 1106–1121.ADSCrossRefGoogle Scholar
  27. 27.
    Mishima, O., Calvert, L.D., Whalley, E. (1984) ‘Melting ice’ I at 77 K and 10 kbar: a new method for making amorphous solids, Nature, 310 393–395.ADSCrossRefGoogle Scholar
  28. 28.
    Debenedetti, P.G. (2000) Metastable liauids, Princeton University Press, Princeton, NJ.Google Scholar
  29. 29.
    Mishima, O., Stanley, H.E. (1998) The relationship between liquid, supercooled and glassy water, Nature 396.329–336.ADSCrossRefGoogle Scholar
  30. 30.
    Poole, P.H., Sciortino, F., Essmann, U., Stanley, H.E. (1992) Phase behaviour of metastable water, Nature 360, 324–328.ADSCrossRefGoogle Scholar
  31. 31.
    Loerting, T., Salzmann, C., Kohl, I. Mayer, E., Hallbrucker, A. (2001) A second distinct structural ‘state’ of HDAI at 77 K and 1 bar, Phys. Chem. Chem. Phys. 3, 5355–5357.CrossRefGoogle Scholar
  32. 32.
    Tulk, C.A., Benmore, C.J., Urquidi, J., Klug, D.D., Neufeind, J., Tomberli, B., Egelstaff, P.A. (2002) Structural studies of several distinct metastable forms of amorphous ice, Science 297, 1320–1323.ADSCrossRefGoogle Scholar
  33. 33.
    Bizid, A., Bosio, L., Defrain, A.. Oumezzine, M. (1987) Structure of high density amorphous water. I. X-ray diffraction study, J. Chem. Phys. 87, 2225–2230.ADSCrossRefGoogle Scholar
  34. 34.
    Bellisent-Funel, M.-C., Teixeira, J., Bosio, L. (1987) Structure of high density amorphous water. II. Neutron scattering study, J. Chem. Phys 87, 2231–2235.ADSCrossRefGoogle Scholar
  35. 35.
    Pusztai, L. (2000), Comparison between the structures of liquid water and (high- and low-density) amorphous ice, Phys. Chem. Chem. Phys. 2, 2703–2706.CrossRefGoogle Scholar
  36. 36.
    Finney, J.L., Hallbrucker, A., Kohl, I., Soper, A.K., Bowron, D.T. (2002) Structure of high and low density amorphous ice by neutron diffraction, Phys. Rev. Letts 88, 225503–14.ADSCrossRefGoogle Scholar
  37. 37.
    Finney, J.L., Bowron, D.T., Soper, A.K., Loerting, T., Mayer, E., Hallbrucker, A. (2002) Structure of a new dense amorphous ice, Phys. Rev. Letts. 89, 205503–14.ADSCrossRefGoogle Scholar
  38. 38.
    Klotz, S., Hamel, G., Loveday, J.S., Nelmes, R.J., Guthrie, M., Soper, A.K. (2002) Structure of highdensity amorphous ice under pressure, Phys. Rev. Letts. 88, 285502–14.CrossRefGoogle Scholar
  39. 39.
    Soper, A.K. (1996) Empirical potential Monte Carlo simulation of fluid structure, Chem. Phys 202, 295–306.ADSCrossRefGoogle Scholar
  40. 40.
    Thiessen, W.E., Narten, A.H. (1982), Neutron diffraction study of light and heavy water mixtures at 25°C, J. Chem. Phys. 77, 2656–2662.ADSCrossRefGoogle Scholar
  41. 41.
    McGreevy, R.L., Pusztai, L. (1990) The structure of molten salts, Proc. Roy. Soc. London A 430, 241–260.ADSCrossRefGoogle Scholar
  42. 42.
    Howe, M.A., McGreevy, R.L., Pusztai, L., Borzsák, I. (1993) Determination of 3 body correlations in simple liquids by RMC modelling of diffraction data. 2. Elemental liquids, Phys. Chem. Liq. 25, 205–241.CrossRefGoogle Scholar
  43. 43.
    Pusztai, L. (2002), Further notes concerning the partial pair correlation functions of (ambient) liquid water, Physica AA 314, 514–520.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • L. Pusztai
    • 1
  1. 1.Research Institutefor Solid State Physics and OpticsHungarian Academy of Sciences BudapestHungary

Personalised recommendations