Skip to main content

Reverse Monte Carlo Modelling of Diffraction Data : Structural Studies of Amorphous Ices

  • Conference paper
  • 1203 Accesses

Part of the book series: NATO Science Series ((NAII,volume 140))

Abstract

During the first of the two lectures, the Reverse Monte Carlo (RMC) technique, a method for modelling the structure of disordered materials, is introduced. Generalities concerning the application of RMC for molecular systems are discussed and then, the use of RMC for modelling structural disorder in crystals is mentioned. The second lecture will be devoted to the analyses of the structure of amorphous ices: the application of the Reverse Monte Carlo method in this respect will be shown in detail, together with a general discussion of diffraction results that have appeared very recently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, J.-P., McDonald, I.R. (1986) The theory of smile liauids Academic Press, London

    Google Scholar 

  2. Pusztai, L., McGreevy, R.L. (1999) MCGR: an inverse method for deriving the pair correlation function, J. Neutron Research 8, 17–35.

    Article  Google Scholar 

  3. Pusztai, L., McGreevy, R.L. (1998) The structure of molten CuBr, J. Phys. . Cond. Matter 10. 525–532.

    Article  ADS  Google Scholar 

  4. Egelstaff, P.A., Page, D.I., Powles, J. G. (1971) Orientational correlations in molecular liquids by neutron scattering. Carbon tetrachloride and germanium tetrabromide, Mol. Phys. 20. 881–894.

    Article  ADS  Google Scholar 

  5. Enderby J.E., North D.N., Egelstaff P.A. (1966) The partial structure factors of liquid Cu-Sn, Phil Mfag. 14, 961–970.

    Article  ADS  Google Scholar 

  6. McGreevy, R.L., Pusztai, L. (1988) Reverse Monte Carlo simulation: a new technique for the determination of disordered structures, Molec. Simul 1, 359–367.

    Article  Google Scholar 

  7. Pusztai, L. (1998) Structural modelling using the reverse Monte Carlo technique: Application to amorphous semiconductors J. Non-Cryst. Sot 227–230, 88–95; McGreevy, R.L. (2001) Reverse Monte Carlo modelling, J. Phys. Cond. Matter 13, R877-R913.

    Google Scholar 

  8. Pusztai, L., McGreevy, R.L. (1997) The structure of liauid CCIL, Mol Phys. 90, 533–54

    Article  ADS  Google Scholar 

  9. Pusztai, L., McGreevy, R.L. (1997) RMC: introduction of a new type of constraint for molecular systems and network glasses, Studsvik NFL Annual Report for 1996, OTH :21.

    Google Scholar 

  10. Jóvári, P., Mészáros, Gy., Pusztai, L., Sváb, E. (2001) The structure of liquid tetrachlorides CCl4, SiCl4, GeCl4, TiCl4, VCl4 and SnCl4, J. Chem. Phys. 114, 8082–8090.

    Article  ADS  Google Scholar 

  11. Evrard, G. (2003) The RMC++ software (private communication)

    Google Scholar 

  12. Soper A.K., Bruni F., Ricci M.A. (1997) Site-site correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data, J. Chem. Phys 106, 247–254.

    Article  ADS  Google Scholar 

  13. Howe, M.A., McGreevy, R.L. (1991) Determination of three body correlations in liquids by RMC modelling of diffraction data. I. Theoretical tests, Phys. Chem. Lig. 24, 1–12.

    Google Scholar 

  14. Gereben, O. and L Pusztai, L. (1994) Structure of amorphous semiconductors: Reverse Monte Carlo studies on a-Ca-Si and a-Ge. Phys. Rev. B. 50, 14136–14143.

    Article  ADS  Google Scholar 

  15. Pusztai, L. (1999) On the partial pair correlation functions of liquid water, Phys. Rev. B 60, 11851–11854.

    Article  ADS  Google Scholar 

  16. Pusztai, L. (2000) On the structure of high and low density amorphous ice, Phys. Rev. B61, 28–31.

    Article  ADS  Google Scholar 

  17. Pusztai, L., Gereben, O., Baranyai, A. (1994) Some remarks on the measured structure factor, Physica Scripta, T57, 69–71.

    Google Scholar 

  18. Keen, D.A., W. Hayes, McGreevy, R.L. (1990) Structural disorder in AgBr on the approach to melting, J. Phys. Cond. Matt 2, 2773–2786.

    Article  ADS  Google Scholar 

  19. Montfrooij, W., McGreevy, R.L., Hadfield, R.A., Andersen, N.-H. (1996) Reverse Monte Carlo analysis of powder patterns, J. Appt. Cryst 29, 285–290.

    Article  Google Scholar 

  20. Mellergård, A., McGreevy, R.L. (1999) Reverse Monte Carlo modelling of neutron powder diffraction data, AActa Cpyst. A55, 783–789.

    Google Scholar 

  21. Mellergård, A., McGreevy, R.L. (1998) Modelling of lattice and magnetic disorder in manganese oxide, JPhys . Cond. Matter 10, 9401–9412.

    Article  ADS  Google Scholar 

  22. Mellergård, A., McGreevy, R.L. (2000) Structural and magnetic disorder in Lal. SrxMnO3, J. Phys. Cond. Macter 12, 4975–4991.

    Article  Google Scholar 

  23. Mellergård, A., Mondelli, C., H. Mutka, H., McGreevy, R.L., Payen, C. (2002) Spin configurations in a kagome based frustrated antiferromagnet: analysis of dynamic disorder by the reverse Monte-Carlo method, Appl. Phys. A74, S883-S885.

    Article  Google Scholar 

  24. Keen, D.A., Nield, V.M., McGreevy, R.L. (1994) Diffuse neutron scattering from an in situ grown aAgl single crystal, J Apl. Cryst. 27, 393–398.

    Article  Google Scholar 

  25. Burton, E.F., Oliver, W.F. (1936) The crystal structure of ice at low temperatures, Proc. Roy. Soc. London Ser. ,1 153, 166–171.

    Article  Google Scholar 

  26. Narten, A.H., Venkatesh, C.G., Rice, S.A. (1976) Diffraction pattern and structure of amorphous solid water at 10 and 77 K, J. Chem. Phys. 64, 1106–1121.

    Article  ADS  Google Scholar 

  27. Mishima, O., Calvert, L.D., Whalley, E. (1984) ‘Melting ice’ I at 77 K and 10 kbar: a new method for making amorphous solids, Nature, 310 393–395.

    Article  ADS  Google Scholar 

  28. Debenedetti, P.G. (2000) Metastable liauids, Princeton University Press, Princeton, NJ.

    Google Scholar 

  29. Mishima, O., Stanley, H.E. (1998) The relationship between liquid, supercooled and glassy water, Nature 396.329–336.

    Article  ADS  Google Scholar 

  30. Poole, P.H., Sciortino, F., Essmann, U., Stanley, H.E. (1992) Phase behaviour of metastable water, Nature 360, 324–328.

    Article  ADS  Google Scholar 

  31. Loerting, T., Salzmann, C., Kohl, I. Mayer, E., Hallbrucker, A. (2001) A second distinct structural ‘state’ of HDAI at 77 K and 1 bar, Phys. Chem. Chem. Phys. 3, 5355–5357.

    Article  Google Scholar 

  32. Tulk, C.A., Benmore, C.J., Urquidi, J., Klug, D.D., Neufeind, J., Tomberli, B., Egelstaff, P.A. (2002) Structural studies of several distinct metastable forms of amorphous ice, Science 297, 1320–1323.

    Article  ADS  Google Scholar 

  33. Bizid, A., Bosio, L., Defrain, A.. Oumezzine, M. (1987) Structure of high density amorphous water. I. X-ray diffraction study, J. Chem. Phys. 87, 2225–2230.

    Article  ADS  Google Scholar 

  34. Bellisent-Funel, M.-C., Teixeira, J., Bosio, L. (1987) Structure of high density amorphous water. II. Neutron scattering study, J. Chem. Phys 87, 2231–2235.

    Article  ADS  Google Scholar 

  35. Pusztai, L. (2000), Comparison between the structures of liquid water and (high- and low-density) amorphous ice, Phys. Chem. Chem. Phys. 2, 2703–2706.

    Article  Google Scholar 

  36. Finney, J.L., Hallbrucker, A., Kohl, I., Soper, A.K., Bowron, D.T. (2002) Structure of high and low density amorphous ice by neutron diffraction, Phys. Rev. Letts 88, 225503–14.

    Article  ADS  Google Scholar 

  37. Finney, J.L., Bowron, D.T., Soper, A.K., Loerting, T., Mayer, E., Hallbrucker, A. (2002) Structure of a new dense amorphous ice, Phys. Rev. Letts. 89, 205503–14.

    Article  ADS  Google Scholar 

  38. Klotz, S., Hamel, G., Loveday, J.S., Nelmes, R.J., Guthrie, M., Soper, A.K. (2002) Structure of highdensity amorphous ice under pressure, Phys. Rev. Letts. 88, 285502–14.

    Article  Google Scholar 

  39. Soper, A.K. (1996) Empirical potential Monte Carlo simulation of fluid structure, Chem. Phys 202, 295–306.

    Article  ADS  Google Scholar 

  40. Thiessen, W.E., Narten, A.H. (1982), Neutron diffraction study of light and heavy water mixtures at 25°C, J. Chem. Phys. 77, 2656–2662.

    Article  ADS  Google Scholar 

  41. McGreevy, R.L., Pusztai, L. (1990) The structure of molten salts, Proc. Roy. Soc. London A 430, 241–260.

    Article  ADS  Google Scholar 

  42. Howe, M.A., McGreevy, R.L., Pusztai, L., Borzsák, I. (1993) Determination of 3 body correlations in simple liquids by RMC modelling of diffraction data. 2. Elemental liquids, Phys. Chem. Liq. 25, 205–241.

    Article  Google Scholar 

  43. Pusztai, L. (2002), Further notes concerning the partial pair correlation functions of (ambient) liquid water, Physica AA 314, 514–520.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Pusztai, L. (2004). Reverse Monte Carlo Modelling of Diffraction Data : Structural Studies of Amorphous Ices. In: Katrusiak, A., McMillan, P. (eds) High-Pressure Crystallography. NATO Science Series, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2102-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2102-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1954-8

  • Online ISBN: 978-1-4020-2102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics