Exponential Fitting pp 223-304 | Cite as
Runge-Kutta Solvers for Ordinary Differential Equations
Chapter
- 402 Downloads
Abstract
Since the original papers of Runge [24] and Kutta [17] a great number of papers and books have been devoted to the properties of Runge-Kutta methods. Reviews of this material can be found in [4], [5], [12], [18]. Kutta [17] formulated the general scheme of what is now called a Runge-Kutta method.
Keywords
Collocation Method Global Error Algebraic Order Local Truncation Error Linear Multistep Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Albrecht P. (1987). The extension of the theory of A-methods to RK methods, in: K. Strehmel, ed. Numerical Treatment of Differential Equations, Proc. 4th Seminar NUMDIFF-4, Tuebner-Texte zur Mathematik (Tuebner, Leipzig):8–18.Google Scholar
- [2]Albrecht, P. (1987) A new theoretical approach to RK methods. SIAM J. Numer AnaL 24: 391–406.CrossRefzbMATHMathSciNetGoogle Scholar
- [3]Butcher, J. C. (1964). On Runge-Kutta processes of high order. Math. Comput., 18: 50–64.CrossRefzbMATHMathSciNetGoogle Scholar
- [4]Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods. Chichester John Wiley and Sons.Google Scholar
- [5]Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. Chichester John Wiley and Sons.Google Scholar
- [6]Coleman, J. P. (1998). Mixed interpolation methods with arbitrary nodes. J. Comp. Appl. Math., 92: 69–83.CrossRefzbMATHGoogle Scholar
- [7]Coleman, J. P. and Duxbury, S. C. (2000). Mixed collocation methods for yn = (x, y). J. Comp. AppL Math., 126: 47–75.CrossRefzbMATHMathSciNetGoogle Scholar
- [8]De Meyer, H., Vanthournout, J. and Vanden Berghe, G. (1990). On a new type of mixed interpolation. J. Comp. Appl. Math., 30: 55–69.CrossRefzbMATHGoogle Scholar
- [9]England, R. (1969). Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations. Comput. J., 12: 166–170.CrossRefzbMATHMathSciNetGoogle Scholar
- [10]Franco, J. M. (2002). An embedded pair of exponentially fitted explicit Runge-Kutta methods. J. Comp. Appl. Math., 149: 407–414.CrossRefzbMATHMathSciNetGoogle Scholar
- [11]Gautschi, W. (1962). Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math., 3: 381–397.CrossRefMathSciNetGoogle Scholar
- [12]Hairer, E., NOrsett, S. R and Wanner G. (1993). Solving Ordinary Differential Equations I, Nonstiff Problems. Berlin Springer-Verlag.Google Scholar
- [13]Henrici, R. (1962). Discrete Variable Methods in Ordinary Differential Equations. John Wiley and Sons,Inc., New-York - London.zbMATHGoogle Scholar
- [14]Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Comm., 105: 1–19.CrossRefzbMATHMathSciNetGoogle Scholar
- [15]Ixaru, L. Gr., De Meyer, H. and Vanden Berghe, G. (2002). Frequency evaluation in exponential fitting multistep algorithms. J. Comp. Appl. Math., 140: 423–433.CrossRefzbMATHGoogle Scholar
- [16]Ixaru, L. Gr. and Paternoster, B. (2001). A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Comm., 133: 177–188.CrossRefzbMATHMathSciNetGoogle Scholar
- [17]Kutta, W. (1901). Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschr. für Math. u. Phys., 46: 435–453.zbMATHGoogle Scholar
- [18]Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems, The Initial Value Problem. Chichester John Wiley and Sons.Google Scholar
- [19]Lyche, T. (1972). Chebyshevian multistep methods for ordinary differential equations. Numer. Math., 19: 65–75.CrossRefzbMATHMathSciNetGoogle Scholar
- [20]Oliver, J. (1975). A Curiosity of Low-Order Explicit Runge-Kutta Methods. Math. Comp., 29: 1032–1036.CrossRefzbMATHMathSciNetGoogle Scholar
- [21]Ozawa, K. (1999). A Four-stage Implicit Runge-Kutta-Nyström Methods with Variable Coefficients for Solving Periodic Initial Value Problems. Japan Journal of Industrial and Applied Mathematics, 16: 25–46.CrossRefMathSciNetGoogle Scholar
- [22]Paternoster, B. (1998). Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based in trigonometric polynomials, Appl. Num. Math., 28: 401–412.CrossRefzbMATHMathSciNetGoogle Scholar
- [23]Runge, C. and König, H. (1924). Vorlesungen über numerisches Rechnen, Grundlehren XI, Springer Verlag.CrossRefzbMATHGoogle Scholar
- [24]Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Math. Ann., 46: 167–192.CrossRefzbMATHMathSciNetGoogle Scholar
- [25]Simos, T. E., Dimas, E. and Sideridis,A. B. (1994). A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems, J. Comp. Appl. Math., 51: 317–326.CrossRefzbMATHMathSciNetGoogle Scholar
- [26]Simos, T. E. (1998). An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Comm., 115: 1–8.CrossRefzbMATHMathSciNetGoogle Scholar
- [27]Simos, T. E. (2001). A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA Journ. of Numerical Analysis, 21: 919–931.CrossRefzbMATHMathSciNetGoogle Scholar
- [28]Vanden Berghe,G., De Meyer, H. Van Daele, M. and Van Hecke, T. (1999). Exponentially-fitted explicit Runge-Kutta methods. Computer Phys. Comm., 123: 7–15.CrossRefGoogle Scholar
- [29]Vanden Berghe, G., De Meyer, H., Van Daele, M. and Van Hecke, T. (2000). Exponentially-fitted Runge-Kutta methods. J. Comp. Appl. Math., 125: 107–115.CrossRefzbMATHGoogle Scholar
- [30]Vanden Berghe, G., Ixaru, L. Gr. and Van Daele, M. (2001). Optimal implicit exponentially-fitted Runge-Kutta methods. Comp. Phys. Commun., 140: 346–357.CrossRefzbMATHGoogle Scholar
- [31]Vanden Berghe, G., Ixaru, L. Gr. and De Meyer, H. (2001). Frequency determination and step—length control for exponentially-fitted Runge—Kutta methods. J. Comp. Appl. Math., 132: 95–105.CrossRefzbMATHGoogle Scholar
- [32]Vanden Berghe, G., Van Daele, M. and Vande Vyver, H. (2003). Exponential-fitted Runge—Kutta methods of collocation type: fixed or variable knot points? J. Comp. AppL Math., 159: 217–239.CrossRefzbMATHGoogle Scholar
- [33]Van der Houwen, P. J. and Sommeijer, B. P. (1987). Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer AnaL, 24: 595–617.CrossRefzbMATHMathSciNetGoogle Scholar
- [34]Van der Houwen, P. J. and Sommeijer, B. P. (1987). Phase-lag analysis of implicit Runge-Kutta methods. SIAM J. Numer Anal., 26: 214–228.CrossRefGoogle Scholar
- [35]Van der Houwen,P. J., Sommeijer, B. P., Strehmel, K. and Weiner, R. (1986). On the numerical integration of second order initial value problems with a periodic forcing force. Computing, 37: 195–218.CrossRefzbMATHMathSciNetGoogle Scholar
- [36]Wright, K. (1970). Some relationships between implicit Runge-Kutta, collocation and Lanczos r-methods, and their stability properties. BIT, 10: 217–227.CrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 2004