Runge-Kutta Solvers for Ordinary Differential Equations

  • Liviu Gr. Ixaru
  • Guido Vanden Berghe
Part of the Mathematics and Its Applications book series (MAIA, volume 568)


Since the original papers of Runge [24] and Kutta [17] a great number of papers and books have been devoted to the properties of Runge-Kutta methods. Reviews of this material can be found in [4], [5], [12], [18]. Kutta [17] formulated the general scheme of what is now called a Runge-Kutta method.


Collocation Method Global Error Algebraic Order Local Truncation Error Linear Multistep Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Albrecht P. (1987). The extension of the theory of A-methods to RK methods, in: K. Strehmel, ed. Numerical Treatment of Differential Equations, Proc. 4th Seminar NUMDIFF-4, Tuebner-Texte zur Mathematik (Tuebner, Leipzig):8–18.Google Scholar
  2. [2]
    Albrecht, P. (1987) A new theoretical approach to RK methods. SIAM J. Numer AnaL 24: 391–406.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Butcher, J. C. (1964). On Runge-Kutta processes of high order. Math. Comput., 18: 50–64.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods. Chichester John Wiley and Sons.Google Scholar
  5. [5]
    Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. Chichester John Wiley and Sons.Google Scholar
  6. [6]
    Coleman, J. P. (1998). Mixed interpolation methods with arbitrary nodes. J. Comp. Appl. Math., 92: 69–83.CrossRefzbMATHGoogle Scholar
  7. [7]
    Coleman, J. P. and Duxbury, S. C. (2000). Mixed collocation methods for yn = (x, y). J. Comp. AppL Math., 126: 47–75.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    De Meyer, H., Vanthournout, J. and Vanden Berghe, G. (1990). On a new type of mixed interpolation. J. Comp. Appl. Math., 30: 55–69.CrossRefzbMATHGoogle Scholar
  9. [9]
    England, R. (1969). Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations. Comput. J., 12: 166–170.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Franco, J. M. (2002). An embedded pair of exponentially fitted explicit Runge-Kutta methods. J. Comp. Appl. Math., 149: 407–414.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Gautschi, W. (1962). Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math., 3: 381–397.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Hairer, E., NOrsett, S. R and Wanner G. (1993). Solving Ordinary Differential Equations I, Nonstiff Problems. Berlin Springer-Verlag.Google Scholar
  13. [13]
    Henrici, R. (1962). Discrete Variable Methods in Ordinary Differential Equations. John Wiley and Sons,Inc., New-York - London.zbMATHGoogle Scholar
  14. [14]
    Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Comm., 105: 1–19.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Ixaru, L. Gr., De Meyer, H. and Vanden Berghe, G. (2002). Frequency evaluation in exponential fitting multistep algorithms. J. Comp. Appl. Math., 140: 423–433.CrossRefzbMATHGoogle Scholar
  16. [16]
    Ixaru, L. Gr. and Paternoster, B. (2001). A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Comm., 133: 177–188.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Kutta, W. (1901). Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschr. für Math. u. Phys., 46: 435–453.zbMATHGoogle Scholar
  18. [18]
    Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems, The Initial Value Problem. Chichester John Wiley and Sons.Google Scholar
  19. [19]
    Lyche, T. (1972). Chebyshevian multistep methods for ordinary differential equations. Numer. Math., 19: 65–75.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Oliver, J. (1975). A Curiosity of Low-Order Explicit Runge-Kutta Methods. Math. Comp., 29: 1032–1036.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    Ozawa, K. (1999). A Four-stage Implicit Runge-Kutta-Nyström Methods with Variable Coefficients for Solving Periodic Initial Value Problems. Japan Journal of Industrial and Applied Mathematics, 16: 25–46.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Paternoster, B. (1998). Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based in trigonometric polynomials, Appl. Num. Math., 28: 401–412.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Runge, C. and König, H. (1924). Vorlesungen über numerisches Rechnen, Grundlehren XI, Springer Verlag.CrossRefzbMATHGoogle Scholar
  24. [24]
    Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Math. Ann., 46: 167–192.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    Simos, T. E., Dimas, E. and Sideridis,A. B. (1994). A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems, J. Comp. Appl. Math., 51: 317–326.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Simos, T. E. (1998). An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Comm., 115: 1–8.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    Simos, T. E. (2001). A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA Journ. of Numerical Analysis, 21: 919–931.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Vanden Berghe,G., De Meyer, H. Van Daele, M. and Van Hecke, T. (1999). Exponentially-fitted explicit Runge-Kutta methods. Computer Phys. Comm., 123: 7–15.CrossRefGoogle Scholar
  29. [29]
    Vanden Berghe, G., De Meyer, H., Van Daele, M. and Van Hecke, T. (2000). Exponentially-fitted Runge-Kutta methods. J. Comp. Appl. Math., 125: 107–115.CrossRefzbMATHGoogle Scholar
  30. [30]
    Vanden Berghe, G., Ixaru, L. Gr. and Van Daele, M. (2001). Optimal implicit exponentially-fitted Runge-Kutta methods. Comp. Phys. Commun., 140: 346–357.CrossRefzbMATHGoogle Scholar
  31. [31]
    Vanden Berghe, G., Ixaru, L. Gr. and De Meyer, H. (2001). Frequency determination and step—length control for exponentially-fitted Runge—Kutta methods. J. Comp. Appl. Math., 132: 95–105.CrossRefzbMATHGoogle Scholar
  32. [32]
    Vanden Berghe, G., Van Daele, M. and Vande Vyver, H. (2003). Exponential-fitted Runge—Kutta methods of collocation type: fixed or variable knot points? J. Comp. AppL Math., 159: 217–239.CrossRefzbMATHGoogle Scholar
  33. [33]
    Van der Houwen, P. J. and Sommeijer, B. P. (1987). Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer AnaL, 24: 595–617.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Van der Houwen, P. J. and Sommeijer, B. P. (1987). Phase-lag analysis of implicit Runge-Kutta methods. SIAM J. Numer Anal., 26: 214–228.CrossRefGoogle Scholar
  35. [35]
    Van der Houwen,P. J., Sommeijer, B. P., Strehmel, K. and Weiner, R. (1986). On the numerical integration of second order initial value problems with a periodic forcing force. Computing, 37: 195–218.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    Wright, K. (1970). Some relationships between implicit Runge-Kutta, collocation and Lanczos r-methods, and their stability properties. BIT, 10: 217–227.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Liviu Gr. Ixaru
    • 1
  • Guido Vanden Berghe
    • 2
  1. 1.“Horia Hulubei”, Department of Theoretical PhysicsNational Institute for Research and Development for Physics and Nuclear EngineeringBucharestRomania
  2. 2.Department of Applied Mathematics and Computer ScienceUniversity of GentGentBelgium

Personalised recommendations