Exponential Fitting pp 145-222 | Cite as
Linear Multistep Solvers for Ordinary Differential Equations
Chapter
- 384 Downloads
Abstract
The solution of the initial value problem for ordinary differential equations is one of the main topics in numerical analysis. The linear multistep methods (algorithms) form a class of methods which benefitted from much attention over the years. The theory of these methods is basically due to Dahlquist, [14], and a series of well-known books which cover both theoretical and practical aspects are available, to mention only the books of Henrici, [22], Lambert, [40], Hairer, Nørsett and Wanner, [20], Shampine, [52], Hairer and Wanner, [21], and Butcher, [4].
Keywords
Ordinary Differential Equation Mesh Point Test Equation Absolute Stability Ordinary Differential Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Abramowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions. Nat. Bur. Stand. Appl. Math. Ser. No. 55, U.S. Govt. Printing Office, Washington, D.C.Google Scholar
- [2]Anantha Krishnaiah, U. (1982). Adaptive methods for periodic initial value problems of second order differential equations. J. Comput. Appl. Math., 8: 101–104.CrossRefzbMATHMathSciNetGoogle Scholar
- [3]Buendia, E. and Guardiola, R. (1985). The Numerov method and singular potentials. J. Comput. Phys., 60: 561–564.CrossRefzbMATHMathSciNetGoogle Scholar
- [4]Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. Wiley, New York.CrossRefzbMATHGoogle Scholar
- [5]Cash, J. R., Raptis, A. D. and Simos, T. E. (1990). A sixth-order exponentially fitted numerical solution of the radial Schrödinger equation. J. Comput. Phys., 91: 413–423.CrossRefzbMATHMathSciNetGoogle Scholar
- [6]Chawla, M. M. (1981). Two-step P-stable methods for second-order differential equations. BIT, 21: 190–193.CrossRefzbMATHMathSciNetGoogle Scholar
- [7]Coleman, J. P. (1980). A new fourth-order method for y“ = g(x)y+ r(x). Comput. Phys. Commun., 19: 185–195.Google Scholar
- [8]Coleman, J. P. (2003). Private communication.Google Scholar
- [9]Coleman, J. P. (1989). Numerical methods for y“ = f (x, y) via rational approximations for the cosine. IMA J. Numer. Anal., 9: 145–165.CrossRefzbMATHMathSciNetGoogle Scholar
- [10]Coleman, J. P. and Duxbury, S. C. (2000). Mixed collocation methods for y“ = f (x, y). J. Comp. Appl. Math., 126: 47–75.CrossRefzbMATHMathSciNetGoogle Scholar
- [11]Coleman, J. P. and Ixaru, L. Gr. (1996). P-stability and exponential-fitting methods for y“ = f (x, y). IMA J. Numer. Anal., 16: 179–199.CrossRefzbMATHMathSciNetGoogle Scholar
- [12]Cowell, P. H. and Crommelin, A. C. D. (1910). Investigation of the motion of Harley’s comet from 1729 to 1910. In Appendix to Greenwich Observations for 1909. Edinburgh.Google Scholar
- [13]Cryer, C. W. (1973). A new class of highly stable methods: Ao-stable methods. BIT, 13: 153–159.CrossRefzbMATHMathSciNetGoogle Scholar
- [14]Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4: 33–53.zbMATHMathSciNetGoogle Scholar
- [15]Dahlquist, G. (1963). A special stability problem for linear multistep methods. BIT, 3: 27–43.CrossRefzbMATHMathSciNetGoogle Scholar
- [16]Denk, G. (1993). A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Appl. Numer Math., 13: 57–67.CrossRefzbMATHMathSciNetGoogle Scholar
- [17]de Vogelaere, R. (1955). A method for the numerical integration of differential equations of second order without explicit derivatives. J. Res. Nat. Bur Standards, 54: 119–125.CrossRefzbMATHMathSciNetGoogle Scholar
- [18]Gear, C. W. and Tu, K. W. (1974). The effect of the variable mesh size on the stability of the multistep methods. SIAM J. Num. Anal., 11: 1025–1043.CrossRefzbMATHMathSciNetGoogle Scholar
- [19]Grigorieff, R. (1983). Stability of multistep methods on variable grids. Numer Math., 42: 359–377.CrossRefzbMATHMathSciNetGoogle Scholar
- [20]Hairer, E., Norsett, S. P. and Wanner, G. (1987). Solving Ordinary Differential Equations I, Non-stiff Problems. Springer, Berlin.Google Scholar
- [21]Hairer, E. and Wanner, G. (1991). Solving Ordinary Differential Equations II, Stiff and Dzfferential-algebraic Problems. Springer, Berlin.Google Scholar
- [22]Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York.zbMATHGoogle Scholar
- [23]Ixaru, L. Gr. (1984). Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht - Boston - Lancaster.zbMATHGoogle Scholar
- [24]Ixaru, L. Gr. (1987). The Numerov method and singular potentials. J. Comput. Phys., 72: 270–274.CrossRefzbMATHMathSciNetGoogle Scholar
- [25]Ixaru, L. Gr. and Rizea, M. (1980). A Numerov–like scheme for the numerical solution of the Schroedinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun., 19: 23–27.CrossRefGoogle Scholar
- [26]Ixaru, L. Gr. and Rizea, M. (1985). Comparison of some four-step methods for the nu-merical integration of the Schroedinger equation. Comput. Phys. Commun., 38: 329–337.CrossRefzbMATHGoogle Scholar
- [27]Ixaru, L. Gr. and Berceanu, S. (1987). Coleman’s method maximally adapted to the Schrödinger equation. Comput-. Phys. Commun., 44: 14–20.CrossRefMathSciNetGoogle Scholar
- [28]Ixaru, L. Gr. and Rizea, M. (1987). Numerov method maximally adapted to the Schrödinger equation. J. Comput. Phys., 73: 306–324.CrossRefzbMATHMathSciNetGoogle Scholar
- [29]Ixaru, L. Gr. and Rizea, M. (1997). Four step methods for y’’ = f (x, y). J. Comput. Appl. Math., 79: 87–99.CrossRefzbMATHMathSciNetGoogle Scholar
- [30]Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Commun., 105: 1–19.CrossRefzbMATHMathSciNetGoogle Scholar
- [31]Ixaru, L. Gr. (2001). Numerical operations on oscillatory functions. Computers and Chemistry, 25: 39–53.CrossRefzbMATHGoogle Scholar
- [32]Ixaru, L. Gr. and Paternoster, B. (1999). A conditionally P-stable fourth-order exponential-fitting method for y“ = f (x, y). J. Comput. Appl. Math., 106: 87–98.CrossRefzbMATHMathSciNetGoogle Scholar
- [33]Ixaru, L. Gr., Vanden Berghe, G., De Meyer, H. and Van Daele, M. (1997). Four step exponential fitted methods for nonlinear physical problems. Comput. Phys. Commun., 100: 56–70.CrossRefzbMATHGoogle Scholar
- [34]Ixaru, L. Gr., Vanden Berghe, G., De Meyer, H. and Van Daele, M. (1977). EXPFIT4 -A FORTRAN program for the numerical solution of systems of nonlinear second order initial value problems. Comput. Phys. Commun., 100: 71–80.CrossRefGoogle Scholar
- [35]Ixaru, L. Gr., Vanden Berghe, G. and De Meyer, H. (2002). Frequency evaluation in exponential mutistep algorithms for ODEs. J. Comput. Appl. Math., 140: 423–434.CrossRefzbMATHMathSciNetGoogle Scholar
- [36]Ixaru, L. Gr., Vanden Berghe, G. and De Meyer, H. (2003). Exponentially fitted variable two-step BDF algorithm for first order ODE. Comput. Phys. Commun., 150: 116–128.CrossRefzbMATHGoogle Scholar
- [37]Jain, M. K., Jain, R. K. and Anantha Krishnaiah, U. (1979). P-stable methods for periodic initial-value problems of second order differential equations. BIT, 19: 347–355.CrossRefzbMATHMathSciNetGoogle Scholar
- [38]Jain, M. K., Jain, R. K. and Anantha Krishnaiah, U. (1979). P-stable single step methods for periodic initial-value problems involving second-order differential equations. J. Eng. Math., 13: 317–326.CrossRefzbMATHMathSciNetGoogle Scholar
- [39]Lambert, J. D. and Watson, I. A. (1976). Symmetric multistep methods for periodic initial-value problems. J. Inst. Math. Applic., 18: 189–202.CrossRefzbMATHMathSciNetGoogle Scholar
- [40]Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Equations. Wiley, New York.Google Scholar
- [41]Liniger, W., Willoughby, R. A. (1970). Efficient integration methods for stiff systems of ordinary differential equations. SIAM J. Numer. Anal., 7: 47–66.CrossRefzbMATHMathSciNetGoogle Scholar
- [42]Lioen, W. M. and de Swart, J. J. B. (1999). Test set for initial value solvers. Available on internet at http://www.hilbert.dm.uniba.itP-testset/ Google Scholar
- [43]Lyche, T. (1974). Chebyshevian multistep methods for ordinary differential equations. Numer. Math., 19: 65–75.CrossRefMathSciNetGoogle Scholar
- [44]Noumerov, B. V. (1924). A method of extrapolation of perturbations. Roy. Ast. Soc. Monthly Notices, 84: 592–601.Google Scholar
- [45]Numerov„ B. (1927). Note on the numerical integration of d 2 x/dt 2 = f (x, t). Astron. Nachrichten, 230: 359–364.CrossRefzbMATHGoogle Scholar
- [46]Raptis, A. D. (1981). On the numerical solution of the Schrödinger equation. Comput. Phys. Commun., 24: 1–4.CrossRefGoogle Scholar
- [47]Raptis, A. D. (1982). Two-step methods for the numerical solution of the Schrödinger equation. Computing, 28: 373–378.CrossRefzbMATHMathSciNetGoogle Scholar
- [48]Raptis, A. D. (1983). Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic error control. Comput. Phys. Commun., 28: 427–431.CrossRefMathSciNetGoogle Scholar
- [49]Raptis, A. D. and Allison, A. C. (1978). Exponential-fitting methods for the numerical solution of the Schrödinger equation. CompuL Phys. Commun., 44: 95–103.CrossRefGoogle Scholar
- [50]Raptis, A. D. and Cash, J. R. (1987). Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation. CompuL Phys. Commun., 44: 95–103.CrossRefzbMATHGoogle Scholar
- [51]Raptis, A. D. and Simos, T. E. (1991). A four-step phase-fitted method for the numerical integration of second-order initial-value problems. BIT, 31: 160–168.CrossRefzbMATHMathSciNetGoogle Scholar
- [52]Shampine, L. F. (1994). Numerical Solution of Ordinaty Differential Equations. Chapman and Hall, New York.Google Scholar
- [53]Simos, T. E. (1990). A four-step method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math., 30: 251–255.CrossRefzbMATHMathSciNetGoogle Scholar
- [54]Simos, T. E. (1991). A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. InL J. Comput. Math., 39: 135–140.CrossRefzbMATHGoogle Scholar
- [55]Simos, T. E. (1991). Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation. IMA J. Numer Anal., 11: 347–356.CrossRefzbMATHMathSciNetGoogle Scholar
- [56]Simos, T. E. (1992). Exponential fitted methods for the numerical integration of the Schrödinger equation. Comput. Phys. Commun., 71: 32–38.CrossRefMathSciNetGoogle Scholar
- [57]Simos, T. E. (1992). Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. InL J. Comput. Math., 46: 77–85.CrossRefzbMATHGoogle Scholar
- [58]Simos, T. E. (1994). An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems. J. Comput. Appl. Math., 55: 125–133.CrossRefzbMATHMathSciNetGoogle Scholar
- [59]Simos, T. E., Dimas, E. and Sideridis, A. B. (1994). A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems. J. Comput. Appl. Math., 51: 317–326.CrossRefzbMATHMathSciNetGoogle Scholar
- [60]Stiefel, E. and Bettis, D. G. (1969). Stabilization of Cowell’s method. Numer Math., 13: 154–175.CrossRefzbMATHMathSciNetGoogle Scholar
- [61]Thomas, R. M., Simos, T. E. and Mitsou, G. V. (1996). A family of Numerov-type ex-ponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. AppL Math., 67: 255–270.CrossRefzbMATHMathSciNetGoogle Scholar
- [62]Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). A modified Numerov integration method for second order periodic initial-value problems. Int. J. Comput. Math., 32: 233–242.CrossRefzbMATHGoogle Scholar
- [63]Van der Houwen, P. J. and Sommeijer, B. P. (1987). Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal., 24: 595–517.CrossRefzbMATHMathSciNetGoogle Scholar
- [64]Widlund, O. B. (1967). A note on unconditionally stable linear multistep methods. BIT, 7: 65–70.CrossRefzbMATHMathSciNetGoogle Scholar
- [65]Wolfram, S. (1992). MATHEMATICA A system for doing mathematics by computer. Addison—Wesley, Reading.Google Scholar
Copyright information
© Springer Science+Business Media Dordrecht 2004