Advertisement

Linear Multistep Solvers for Ordinary Differential Equations

  • Liviu Gr. Ixaru
  • Guido Vanden Berghe
Chapter
  • 384 Downloads
Part of the Mathematics and Its Applications book series (MAIA, volume 568)

Abstract

The solution of the initial value problem for ordinary differential equations is one of the main topics in numerical analysis. The linear multistep methods (algorithms) form a class of methods which benefitted from much attention over the years. The theory of these methods is basically due to Dahlquist, [14], and a series of well-known books which cover both theoretical and practical aspects are available, to mention only the books of Henrici, [22], Lambert, [40], Hairer, Nørsett and Wanner, [20], Shampine, [52], Hairer and Wanner, [21], and Butcher, [4].

Keywords

Ordinary Differential Equation Mesh Point Test Equation Absolute Stability Ordinary Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions. Nat. Bur. Stand. Appl. Math. Ser. No. 55, U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  2. [2]
    Anantha Krishnaiah, U. (1982). Adaptive methods for periodic initial value problems of second order differential equations. J. Comput. Appl. Math., 8: 101–104.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Buendia, E. and Guardiola, R. (1985). The Numerov method and singular potentials. J. Comput. Phys., 60: 561–564.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. Wiley, New York.CrossRefzbMATHGoogle Scholar
  5. [5]
    Cash, J. R., Raptis, A. D. and Simos, T. E. (1990). A sixth-order exponentially fitted numerical solution of the radial Schrödinger equation. J. Comput. Phys., 91: 413–423.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Chawla, M. M. (1981). Two-step P-stable methods for second-order differential equations. BIT, 21: 190–193.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Coleman, J. P. (1980). A new fourth-order method for y“ = g(x)y+ r(x). Comput. Phys. Commun., 19: 185–195.Google Scholar
  8. [8]
    Coleman, J. P. (2003). Private communication.Google Scholar
  9. [9]
    Coleman, J. P. (1989). Numerical methods for y“ = f (x, y) via rational approximations for the cosine. IMA J. Numer. Anal., 9: 145–165.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Coleman, J. P. and Duxbury, S. C. (2000). Mixed collocation methods for y“ = f (x, y). J. Comp. Appl. Math., 126: 47–75.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Coleman, J. P. and Ixaru, L. Gr. (1996). P-stability and exponential-fitting methods for y“ = f (x, y). IMA J. Numer. Anal., 16: 179–199.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Cowell, P. H. and Crommelin, A. C. D. (1910). Investigation of the motion of Harley’s comet from 1729 to 1910. In Appendix to Greenwich Observations for 1909. Edinburgh.Google Scholar
  13. [13]
    Cryer, C. W. (1973). A new class of highly stable methods: Ao-stable methods. BIT, 13: 153–159.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4: 33–53.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Dahlquist, G. (1963). A special stability problem for linear multistep methods. BIT, 3: 27–43.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    Denk, G. (1993). A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Appl. Numer Math., 13: 57–67.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    de Vogelaere, R. (1955). A method for the numerical integration of differential equations of second order without explicit derivatives. J. Res. Nat. Bur Standards, 54: 119–125.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    Gear, C. W. and Tu, K. W. (1974). The effect of the variable mesh size on the stability of the multistep methods. SIAM J. Num. Anal., 11: 1025–1043.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Grigorieff, R. (1983). Stability of multistep methods on variable grids. Numer Math., 42: 359–377.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Hairer, E., Norsett, S. P. and Wanner, G. (1987). Solving Ordinary Differential Equations I, Non-stiff Problems. Springer, Berlin.Google Scholar
  21. [21]
    Hairer, E. and Wanner, G. (1991). Solving Ordinary Differential Equations II, Stiff and Dzfferential-algebraic Problems. Springer, Berlin.Google Scholar
  22. [22]
    Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York.zbMATHGoogle Scholar
  23. [23]
    Ixaru, L. Gr. (1984). Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht - Boston - Lancaster.zbMATHGoogle Scholar
  24. [24]
    Ixaru, L. Gr. (1987). The Numerov method and singular potentials. J. Comput. Phys., 72: 270–274.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    Ixaru, L. Gr. and Rizea, M. (1980). A Numerov–like scheme for the numerical solution of the Schroedinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun., 19: 23–27.CrossRefGoogle Scholar
  26. [26]
    Ixaru, L. Gr. and Rizea, M. (1985). Comparison of some four-step methods for the nu-merical integration of the Schroedinger equation. Comput. Phys. Commun., 38: 329–337.CrossRefzbMATHGoogle Scholar
  27. [27]
    Ixaru, L. Gr. and Berceanu, S. (1987). Coleman’s method maximally adapted to the Schrödinger equation. Comput-. Phys. Commun., 44: 14–20.CrossRefMathSciNetGoogle Scholar
  28. [28]
    Ixaru, L. Gr. and Rizea, M. (1987). Numerov method maximally adapted to the Schrödinger equation. J. Comput. Phys., 73: 306–324.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Ixaru, L. Gr. and Rizea, M. (1997). Four step methods for y’’ = f (x, y). J. Comput. Appl. Math., 79: 87–99.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Commun., 105: 1–19.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    Ixaru, L. Gr. (2001). Numerical operations on oscillatory functions. Computers and Chemistry, 25: 39–53.CrossRefzbMATHGoogle Scholar
  32. [32]
    Ixaru, L. Gr. and Paternoster, B. (1999). A conditionally P-stable fourth-order exponential-fitting method for y“ = f (x, y). J. Comput. Appl. Math., 106: 87–98.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Ixaru, L. Gr., Vanden Berghe, G., De Meyer, H. and Van Daele, M. (1997). Four step exponential fitted methods for nonlinear physical problems. Comput. Phys. Commun., 100: 56–70.CrossRefzbMATHGoogle Scholar
  34. [34]
    Ixaru, L. Gr., Vanden Berghe, G., De Meyer, H. and Van Daele, M. (1977). EXPFIT4 -A FORTRAN program for the numerical solution of systems of nonlinear second order initial value problems. Comput. Phys. Commun., 100: 71–80.CrossRefGoogle Scholar
  35. [35]
    Ixaru, L. Gr., Vanden Berghe, G. and De Meyer, H. (2002). Frequency evaluation in exponential mutistep algorithms for ODEs. J. Comput. Appl. Math., 140: 423–434.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    Ixaru, L. Gr., Vanden Berghe, G. and De Meyer, H. (2003). Exponentially fitted variable two-step BDF algorithm for first order ODE. Comput. Phys. Commun., 150: 116–128.CrossRefzbMATHGoogle Scholar
  37. [37]
    Jain, M. K., Jain, R. K. and Anantha Krishnaiah, U. (1979). P-stable methods for periodic initial-value problems of second order differential equations. BIT, 19: 347–355.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    Jain, M. K., Jain, R. K. and Anantha Krishnaiah, U. (1979). P-stable single step methods for periodic initial-value problems involving second-order differential equations. J. Eng. Math., 13: 317–326.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    Lambert, J. D. and Watson, I. A. (1976). Symmetric multistep methods for periodic initial-value problems. J. Inst. Math. Applic., 18: 189–202.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Equations. Wiley, New York.Google Scholar
  41. [41]
    Liniger, W., Willoughby, R. A. (1970). Efficient integration methods for stiff systems of ordinary differential equations. SIAM J. Numer. Anal., 7: 47–66.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    Lioen, W. M. and de Swart, J. J. B. (1999). Test set for initial value solvers. Available on internet at http://www.hilbert.dm.uniba.itP-testset/ Google Scholar
  43. [43]
    Lyche, T. (1974). Chebyshevian multistep methods for ordinary differential equations. Numer. Math., 19: 65–75.CrossRefMathSciNetGoogle Scholar
  44. [44]
    Noumerov, B. V. (1924). A method of extrapolation of perturbations. Roy. Ast. Soc. Monthly Notices, 84: 592–601.Google Scholar
  45. [45]
    Numerov„ B. (1927). Note on the numerical integration of d 2 x/dt 2 = f (x, t). Astron. Nachrichten, 230: 359–364.CrossRefzbMATHGoogle Scholar
  46. [46]
    Raptis, A. D. (1981). On the numerical solution of the Schrödinger equation. Comput. Phys. Commun., 24: 1–4.CrossRefGoogle Scholar
  47. [47]
    Raptis, A. D. (1982). Two-step methods for the numerical solution of the Schrödinger equation. Computing, 28: 373–378.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    Raptis, A. D. (1983). Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic error control. Comput. Phys. Commun., 28: 427–431.CrossRefMathSciNetGoogle Scholar
  49. [49]
    Raptis, A. D. and Allison, A. C. (1978). Exponential-fitting methods for the numerical solution of the Schrödinger equation. CompuL Phys. Commun., 44: 95–103.CrossRefGoogle Scholar
  50. [50]
    Raptis, A. D. and Cash, J. R. (1987). Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation. CompuL Phys. Commun., 44: 95–103.CrossRefzbMATHGoogle Scholar
  51. [51]
    Raptis, A. D. and Simos, T. E. (1991). A four-step phase-fitted method for the numerical integration of second-order initial-value problems. BIT, 31: 160–168.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    Shampine, L. F. (1994). Numerical Solution of Ordinaty Differential Equations. Chapman and Hall, New York.Google Scholar
  53. [53]
    Simos, T. E. (1990). A four-step method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math., 30: 251–255.CrossRefzbMATHMathSciNetGoogle Scholar
  54. [54]
    Simos, T. E. (1991). A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. InL J. Comput. Math., 39: 135–140.CrossRefzbMATHGoogle Scholar
  55. [55]
    Simos, T. E. (1991). Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation. IMA J. Numer Anal., 11: 347–356.CrossRefzbMATHMathSciNetGoogle Scholar
  56. [56]
    Simos, T. E. (1992). Exponential fitted methods for the numerical integration of the Schrödinger equation. Comput. Phys. Commun., 71: 32–38.CrossRefMathSciNetGoogle Scholar
  57. [57]
    Simos, T. E. (1992). Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. InL J. Comput. Math., 46: 77–85.CrossRefzbMATHGoogle Scholar
  58. [58]
    Simos, T. E. (1994). An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems. J. Comput. Appl. Math., 55: 125–133.CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    Simos, T. E., Dimas, E. and Sideridis, A. B. (1994). A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems. J. Comput. Appl. Math., 51: 317–326.CrossRefzbMATHMathSciNetGoogle Scholar
  60. [60]
    Stiefel, E. and Bettis, D. G. (1969). Stabilization of Cowell’s method. Numer Math., 13: 154–175.CrossRefzbMATHMathSciNetGoogle Scholar
  61. [61]
    Thomas, R. M., Simos, T. E. and Mitsou, G. V. (1996). A family of Numerov-type ex-ponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. AppL Math., 67: 255–270.CrossRefzbMATHMathSciNetGoogle Scholar
  62. [62]
    Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). A modified Numerov integration method for second order periodic initial-value problems. Int. J. Comput. Math., 32: 233–242.CrossRefzbMATHGoogle Scholar
  63. [63]
    Van der Houwen, P. J. and Sommeijer, B. P. (1987). Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal., 24: 595–517.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    Widlund, O. B. (1967). A note on unconditionally stable linear multistep methods. BIT, 7: 65–70.CrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    Wolfram, S. (1992). MATHEMATICA A system for doing mathematics by computer. Addison—Wesley, Reading.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Liviu Gr. Ixaru
    • 1
  • Guido Vanden Berghe
    • 2
  1. 1.“Horia Hulubei”, Department of Theoretical PhysicsNational Institute for Research and Development for Physics and Nuclear EngineeringBucharestRomania
  2. 2.Department of Applied Mathematics and Computer ScienceUniversity of GentGentBelgium

Personalised recommendations