Skip to main content

Linear Multistep Solvers for Ordinary Differential Equations

  • Chapter
Exponential Fitting

Part of the book series: Mathematics and Its Applications ((MAIA,volume 568))

  • 543 Accesses

Abstract

The solution of the initial value problem for ordinary differential equations is one of the main topics in numerical analysis. The linear multistep methods (algorithms) form a class of methods which benefitted from much attention over the years. The theory of these methods is basically due to Dahlquist, [14], and a series of well-known books which cover both theoretical and practical aspects are available, to mention only the books of Henrici, [22], Lambert, [40], Hairer, Nørsett and Wanner, [20], Shampine, [52], Hairer and Wanner, [21], and Butcher, [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions. Nat. Bur. Stand. Appl. Math. Ser. No. 55, U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  2. Anantha Krishnaiah, U. (1982). Adaptive methods for periodic initial value problems of second order differential equations. J. Comput. Appl. Math., 8: 101–104.

    Article  MATH  MathSciNet  Google Scholar 

  3. Buendia, E. and Guardiola, R. (1985). The Numerov method and singular potentials. J. Comput. Phys., 60: 561–564.

    Article  MATH  MathSciNet  Google Scholar 

  4. Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. Wiley, New York.

    Book  MATH  Google Scholar 

  5. Cash, J. R., Raptis, A. D. and Simos, T. E. (1990). A sixth-order exponentially fitted numerical solution of the radial Schrödinger equation. J. Comput. Phys., 91: 413–423.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chawla, M. M. (1981). Two-step P-stable methods for second-order differential equations. BIT, 21: 190–193.

    Article  MATH  MathSciNet  Google Scholar 

  7. Coleman, J. P. (1980). A new fourth-order method for y“ = g(x)y+ r(x). Comput. Phys. Commun., 19: 185–195.

    Google Scholar 

  8. Coleman, J. P. (2003). Private communication.

    Google Scholar 

  9. Coleman, J. P. (1989). Numerical methods for y“ = f (x, y) via rational approximations for the cosine. IMA J. Numer. Anal., 9: 145–165.

    Article  MATH  MathSciNet  Google Scholar 

  10. Coleman, J. P. and Duxbury, S. C. (2000). Mixed collocation methods for y“ = f (x, y). J. Comp. Appl. Math., 126: 47–75.

    Article  MATH  MathSciNet  Google Scholar 

  11. Coleman, J. P. and Ixaru, L. Gr. (1996). P-stability and exponential-fitting methods for y“ = f (x, y). IMA J. Numer. Anal., 16: 179–199.

    Article  MATH  MathSciNet  Google Scholar 

  12. Cowell, P. H. and Crommelin, A. C. D. (1910). Investigation of the motion of Harley’s comet from 1729 to 1910. In Appendix to Greenwich Observations for 1909. Edinburgh.

    Google Scholar 

  13. Cryer, C. W. (1973). A new class of highly stable methods: Ao-stable methods. BIT, 13: 153–159.

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand., 4: 33–53.

    MATH  MathSciNet  Google Scholar 

  15. Dahlquist, G. (1963). A special stability problem for linear multistep methods. BIT, 3: 27–43.

    Article  MATH  MathSciNet  Google Scholar 

  16. Denk, G. (1993). A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Appl. Numer Math., 13: 57–67.

    Article  MATH  MathSciNet  Google Scholar 

  17. de Vogelaere, R. (1955). A method for the numerical integration of differential equations of second order without explicit derivatives. J. Res. Nat. Bur Standards, 54: 119–125.

    Article  MATH  MathSciNet  Google Scholar 

  18. Gear, C. W. and Tu, K. W. (1974). The effect of the variable mesh size on the stability of the multistep methods. SIAM J. Num. Anal., 11: 1025–1043.

    Article  MATH  MathSciNet  Google Scholar 

  19. Grigorieff, R. (1983). Stability of multistep methods on variable grids. Numer Math., 42: 359–377.

    Article  MATH  MathSciNet  Google Scholar 

  20. Hairer, E., Norsett, S. P. and Wanner, G. (1987). Solving Ordinary Differential Equations I, Non-stiff Problems. Springer, Berlin.

    Google Scholar 

  21. Hairer, E. and Wanner, G. (1991). Solving Ordinary Differential Equations II, Stiff and Dzfferential-algebraic Problems. Springer, Berlin.

    Google Scholar 

  22. Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  23. Ixaru, L. Gr. (1984). Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht - Boston - Lancaster.

    MATH  Google Scholar 

  24. Ixaru, L. Gr. (1987). The Numerov method and singular potentials. J. Comput. Phys., 72: 270–274.

    Article  MATH  MathSciNet  Google Scholar 

  25. Ixaru, L. Gr. and Rizea, M. (1980). A Numerov–like scheme for the numerical solution of the Schroedinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun., 19: 23–27.

    Article  Google Scholar 

  26. Ixaru, L. Gr. and Rizea, M. (1985). Comparison of some four-step methods for the nu-merical integration of the Schroedinger equation. Comput. Phys. Commun., 38: 329–337.

    Article  MATH  Google Scholar 

  27. Ixaru, L. Gr. and Berceanu, S. (1987). Coleman’s method maximally adapted to the Schrödinger equation. Comput-. Phys. Commun., 44: 14–20.

    Article  MathSciNet  Google Scholar 

  28. Ixaru, L. Gr. and Rizea, M. (1987). Numerov method maximally adapted to the Schrödinger equation. J. Comput. Phys., 73: 306–324.

    Article  MATH  MathSciNet  Google Scholar 

  29. Ixaru, L. Gr. and Rizea, M. (1997). Four step methods for y’’ = f (x, y). J. Comput. Appl. Math., 79: 87–99.

    Article  MATH  MathSciNet  Google Scholar 

  30. Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Commun., 105: 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ixaru, L. Gr. (2001). Numerical operations on oscillatory functions. Computers and Chemistry, 25: 39–53.

    Article  MATH  Google Scholar 

  32. Ixaru, L. Gr. and Paternoster, B. (1999). A conditionally P-stable fourth-order exponential-fitting method for y“ = f (x, y). J. Comput. Appl. Math., 106: 87–98.

    Article  MATH  MathSciNet  Google Scholar 

  33. Ixaru, L. Gr., Vanden Berghe, G., De Meyer, H. and Van Daele, M. (1997). Four step exponential fitted methods for nonlinear physical problems. Comput. Phys. Commun., 100: 56–70.

    Article  MATH  Google Scholar 

  34. Ixaru, L. Gr., Vanden Berghe, G., De Meyer, H. and Van Daele, M. (1977). EXPFIT4 -A FORTRAN program for the numerical solution of systems of nonlinear second order initial value problems. Comput. Phys. Commun., 100: 71–80.

    Article  Google Scholar 

  35. Ixaru, L. Gr., Vanden Berghe, G. and De Meyer, H. (2002). Frequency evaluation in exponential mutistep algorithms for ODEs. J. Comput. Appl. Math., 140: 423–434.

    Article  MATH  MathSciNet  Google Scholar 

  36. Ixaru, L. Gr., Vanden Berghe, G. and De Meyer, H. (2003). Exponentially fitted variable two-step BDF algorithm for first order ODE. Comput. Phys. Commun., 150: 116–128.

    Article  MATH  Google Scholar 

  37. Jain, M. K., Jain, R. K. and Anantha Krishnaiah, U. (1979). P-stable methods for periodic initial-value problems of second order differential equations. BIT, 19: 347–355.

    Article  MATH  MathSciNet  Google Scholar 

  38. Jain, M. K., Jain, R. K. and Anantha Krishnaiah, U. (1979). P-stable single step methods for periodic initial-value problems involving second-order differential equations. J. Eng. Math., 13: 317–326.

    Article  MATH  MathSciNet  Google Scholar 

  39. Lambert, J. D. and Watson, I. A. (1976). Symmetric multistep methods for periodic initial-value problems. J. Inst. Math. Applic., 18: 189–202.

    Article  MATH  MathSciNet  Google Scholar 

  40. Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Equations. Wiley, New York.

    Google Scholar 

  41. Liniger, W., Willoughby, R. A. (1970). Efficient integration methods for stiff systems of ordinary differential equations. SIAM J. Numer. Anal., 7: 47–66.

    Article  MATH  MathSciNet  Google Scholar 

  42. Lioen, W. M. and de Swart, J. J. B. (1999). Test set for initial value solvers. Available on internet at http://www.hilbert.dm.uniba.itP-testset/

    Google Scholar 

  43. Lyche, T. (1974). Chebyshevian multistep methods for ordinary differential equations. Numer. Math., 19: 65–75.

    Article  MathSciNet  Google Scholar 

  44. Noumerov, B. V. (1924). A method of extrapolation of perturbations. Roy. Ast. Soc. Monthly Notices, 84: 592–601.

    Google Scholar 

  45. Numerov„ B. (1927). Note on the numerical integration of d 2 x/dt 2 = f (x, t). Astron. Nachrichten, 230: 359–364.

    Article  MATH  Google Scholar 

  46. Raptis, A. D. (1981). On the numerical solution of the Schrödinger equation. Comput. Phys. Commun., 24: 1–4.

    Article  Google Scholar 

  47. Raptis, A. D. (1982). Two-step methods for the numerical solution of the Schrödinger equation. Computing, 28: 373–378.

    Article  MATH  MathSciNet  Google Scholar 

  48. Raptis, A. D. (1983). Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic error control. Comput. Phys. Commun., 28: 427–431.

    Article  MathSciNet  Google Scholar 

  49. Raptis, A. D. and Allison, A. C. (1978). Exponential-fitting methods for the numerical solution of the Schrödinger equation. CompuL Phys. Commun., 44: 95–103.

    Article  Google Scholar 

  50. Raptis, A. D. and Cash, J. R. (1987). Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation. CompuL Phys. Commun., 44: 95–103.

    Article  MATH  Google Scholar 

  51. Raptis, A. D. and Simos, T. E. (1991). A four-step phase-fitted method for the numerical integration of second-order initial-value problems. BIT, 31: 160–168.

    Article  MATH  MathSciNet  Google Scholar 

  52. Shampine, L. F. (1994). Numerical Solution of Ordinaty Differential Equations. Chapman and Hall, New York.

    Google Scholar 

  53. Simos, T. E. (1990). A four-step method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math., 30: 251–255.

    Article  MATH  MathSciNet  Google Scholar 

  54. Simos, T. E. (1991). A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. InL J. Comput. Math., 39: 135–140.

    Article  MATH  Google Scholar 

  55. Simos, T. E. (1991). Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation. IMA J. Numer Anal., 11: 347–356.

    Article  MATH  MathSciNet  Google Scholar 

  56. Simos, T. E. (1992). Exponential fitted methods for the numerical integration of the Schrödinger equation. Comput. Phys. Commun., 71: 32–38.

    Article  MathSciNet  Google Scholar 

  57. Simos, T. E. (1992). Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. InL J. Comput. Math., 46: 77–85.

    Article  MATH  Google Scholar 

  58. Simos, T. E. (1994). An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems. J. Comput. Appl. Math., 55: 125–133.

    Article  MATH  MathSciNet  Google Scholar 

  59. Simos, T. E., Dimas, E. and Sideridis, A. B. (1994). A Runge-Kutta-Nyström method for the numerical integration of special second-order periodic initial-value problems. J. Comput. Appl. Math., 51: 317–326.

    Article  MATH  MathSciNet  Google Scholar 

  60. Stiefel, E. and Bettis, D. G. (1969). Stabilization of Cowell’s method. Numer Math., 13: 154–175.

    Article  MATH  MathSciNet  Google Scholar 

  61. Thomas, R. M., Simos, T. E. and Mitsou, G. V. (1996). A family of Numerov-type ex-ponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. AppL Math., 67: 255–270.

    Article  MATH  MathSciNet  Google Scholar 

  62. Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). A modified Numerov integration method for second order periodic initial-value problems. Int. J. Comput. Math., 32: 233–242.

    Article  MATH  Google Scholar 

  63. Van der Houwen, P. J. and Sommeijer, B. P. (1987). Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal., 24: 595–517.

    Article  MATH  MathSciNet  Google Scholar 

  64. Widlund, O. B. (1967). A note on unconditionally stable linear multistep methods. BIT, 7: 65–70.

    Article  MATH  MathSciNet  Google Scholar 

  65. Wolfram, S. (1992). MATHEMATICA A system for doing mathematics by computer. Addison—Wesley, Reading.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ixaru, L.G., Vanden Berghe, G. (2004). Linear Multistep Solvers for Ordinary Differential Equations. In: Exponential Fitting. Mathematics and Its Applications, vol 568. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2100-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2100-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6590-2

  • Online ISBN: 978-1-4020-2100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics