Numerical Differentiation, Quadrature and Interpolation

  • Liviu Gr. Ixaru
  • Guido Vanden Berghe
Part of the Mathematics and Its Applications book series (MAIA, volume 568)


A series of ef formulae tuned on functions of the form (3.38) or (3.39) are derived here by the procedure described in the previous chapter. We construct the ef coefficients for approximations of the first and the second derivative of y(x), for a set of quadrature rules, and for some simple interpolation formulae.


Quadrature Rule Double Precision Numerical Differentiation Extended Rule Central Difference Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blatt, J. M. (1967). Practical points concerning the solution of the Schrödinger equation. Comput. Phys. Commun., 1: 382–396.zbMATHGoogle Scholar
  2. [2]
    Bocher, R., De Meyer, H. and Vanden Berghe, G. (1994). On Gregory and modified Gregory-type corrections to Newton-Cotes quadrature. J. Comput. Appl. Math., 50: 145–158.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Burden, R. L. and Faires, J. D. (1981). Numerical Analysis. Prindle, Weber and Schmidt, Boston.Google Scholar
  4. [4]
    Chakalov, L. (1954). General quadrature formulae of Gaussian type. Bulgar. Akad. Izv. Mat. Inst., 1: 67–84. (English transl.: (1995) East J. Approx., 1: 261–276.)Google Scholar
  5. [5]
    Coleman, J. P. (2003). Private communication.Google Scholar
  6. [6]
    Davis, R J. and Rabinowitz, R. (1984). Methods of Numerical Integration. Academic Press, New York.zbMATHGoogle Scholar
  7. [7]
    De Meyer, H., Vanthournout, J., Vanden Berghe, G. and Vanderbauwhede, A. (1990). On the error estimation for a mixed type of interpolation. J. Comput. Appl. Math., 32: 407–415.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    Duris, C. S. (1976). Generating and compounding product-type Newton-Cotes quadrature formulas. TOMS, 2: 50–58.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Ehrenmark, U. T. (1988). A three-point formula for numerical quadrature of oscillatory integrals with variable frequency. J. Comput. Appl. Math., 21: 87–99.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Ehrenmark, U. T. (1996). On the error and its control in a two-parameter generalised Newton-Cotes rule. J. Comput. Appl. Math., 75: 171–195.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Ehrenmark, U. T. (2001). A note on a recent study of oscillatory integration rules. J. Comput. Appl. Math., 131: 493–496.CrossRefzbMATHGoogle Scholar
  12. [12]
    Evans, G. (1993). Practical Numerical Integration. John Wiley Sons Ltd., Chichester.zbMATHGoogle Scholar
  13. [13]
    Evans, G. A. and Webster, J. R. (1997). A high order, progressive method for the evaluation of irregular oscillatory integrals. Appl. Num. Math., 23: 205–218.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Evans, G. A. and Webster, J. R. (1999). A comparison of some methods for the evaluation of highly oscillatory integrals J. Comput. Appl. Math., 112: 55–69.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Gerald, G. F. and Wheatley, P. O. (1994). Applied Numerical Analysis. Addison-Wesley, Reading.zbMATHGoogle Scholar
  16. [16]
    Ghizzetti, A. and Ossicini, A. (1970) Quadrature fonnulae. Birkhatiser, Basel.CrossRefGoogle Scholar
  17. [17]
    Fröberg, K. -E. (1970) Introduction to numerical analysis. Addison—Wesley, Reading.zbMATHGoogle Scholar
  18. [18]
    ham, L. Gr. (1984). Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht - Boston - Lancaster.Google Scholar
  19. [19]
    Ixaru, L. Gr. (1997). Operations on oscillatory functions. Comput. Phys. Commun., 105: 1–19.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Ixaru, L. Gr., De Meyer, H. and Vanden Berghe, G. (1997). CP methods for the Schrödinger equation revisited. J Comput. Appl. Math., 88: 289–314.CrossRefGoogle Scholar
  21. [21]
    Ixaru, L. Gr., De Meyer, H. and Vanden Berghe, G. (1999). SLCPM12 — a program for solving regular Sturm—Liouville problems. Comput. Phys. Comm., 118: 259–277.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    Ixaru, L. Gr. (2000). CP methods for the Schrödinger equation. J. Comput. AppL Math., 125: 347–357.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Ixaru, L. Gr. (2001). Numerical operations on oscillatory functions. Computers and Chem-istry, 25: 39–53.CrossRefzbMATHGoogle Scholar
  24. [24]
    Ixaru, L. Gr. and Paternoster, B. (2001). A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Comm., 133: 177–188.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    Kim, K. J. (2003). Quadrature rules for the integration of the product of two oscillatory functions with different frequencies. Comput. Phys. Comm., 153: 135–144.CrossRefzbMATHGoogle Scholar
  26. [26]
    Kim, K. J., Cools, R. and Ixaru, L. Gr. (2002). Quadrature rules using first derivatives for oscillatory integrands. Comput. Appl. Math., 140: 479–497.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    Kim, K. J., Cools, R. and Ixaru, L. Gr. (2003). Extended quadrature rules for oscillatory integrands. AppL Num. Math., 46: 59–73.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Kohler, P. (1993). On the error of parameter-dependent compound quadrature formulas. J. Comput. Appl. Math., 47: 47–60.CrossRefMathSciNetGoogle Scholar
  29. [29]
    Krylov, V. I. (1962) Approximate Calculation of Integrals. Macmillan, New York.zbMATHGoogle Scholar
  30. [30]
    Milovanovic, G. V. and Spalevic, M. M. (2002). Quadrature formulae connected to aorthogonal polynomials. J. Comput. Appl. Math., 140: 619–637.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    Phillips, J. M. and Taylor, P. J. (1973). Theory and Applications of Numerical Analysis. Academic Press. London and New York.zbMATHGoogle Scholar
  32. [32]
    Popoviciu, T. (1955). Sur une generalisation de la formule d’integration numerique de Gauss. Acad. R.R Romane FiL Iasi Stud. Cerc. Sti., 6: 29–57.zbMATHMathSciNetGoogle Scholar
  33. [33]
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1986). Numerical Recipes, The Art of Scientific Computing. Cambridge University Press, Cambridge.Google Scholar
  34. [34]
    Pryce, J. D. (1993). Numerical Solution of Stunn-Liouville Problems. Oxford University Press, Oxford.Google Scholar
  35. [35]
    Stroud, A. and Secrest, D. (1966). Gaussian Quadrature Formulas, Prentice Hall, Engle-wood Cliffs, N.J.zbMATHGoogle Scholar
  36. [36]
    Stroud, A. and Stancu, D. D. (1965). Quadrature formulas with multiple Gaussian nodes. J. SIAM Numer. Anal. Ser. B, 2: 129–143.zbMATHMathSciNetGoogle Scholar
  37. [37]
    Turan, T. (1950). On the theory of the mechanical quadrature. Acta Sci. Math. Szeged, 12: 30–37.MathSciNetGoogle Scholar
  38. [38]
    Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). On a new type of mixed interpolation. J. Comput. Appl. Math., 30: 55–69.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    Vanden Berghe, G., De Meyer, H. and Vanthournout, J. (1990). On a class of modified Newton—Cotes quadrature formulae based upon mixed-type interpolation. J. Comput. Appl. Math., 31: 331–349.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Liviu Gr. Ixaru
    • 1
  • Guido Vanden Berghe
    • 2
  1. 1.“Horia Hulubei”, Department of Theoretical PhysicsNational Institute for Research and Development for Physics and Nuclear EngineeringBucharestRomania
  2. 2.Department of Applied Mathematics and Computer ScienceUniversity of GentGentBelgium

Personalised recommendations