Advertisement

Mathematical Properties

  • Liviu Gr. Ixaru
  • Guido Vanden Berghe
Chapter
  • 383 Downloads
Part of the Mathematics and Its Applications book series (MAIA, volume 568)

Abstract

In this chapter we present the main mathematical elements of the exponential fitting procedure. It will be seen that this procedure is rather general. However, later on in this book the procedure will be mainly applied in the restricted area of the generation of formulae and algorithms for functions with oscillatory or hyperbolic variation.

Keywords

Independent Solution Mathematical Property Double Precision Approximation Formula Divided Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Burden, R. L. and Faires J. D. (1981). Numerical Analysis. Prindle, Weber and Schmidt, Boston.Google Scholar
  2. [2]
    Coleman, J. P. (2003). Private communication.Google Scholar
  3. [3]
    De Meyer, H., Vanthournout, J., Vanden Berghe, G. and Vanderbauwhede, A. (1990). On the error estimation for a mixed type of interpolation. J. Comput. Appl. Math., 32: 407–415.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Gerald, G. F. and Wheatley, P. O. (1994). Applied Numerical Analysis. Addison-Wesley, Reading.zbMATHGoogle Scholar
  5. [5]
    Ixaru, L. Gr. (1997). Operations on oscillatory functions. CompuL Phys. Commun., 105: 1–19.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Ixaru, L. Gr., De Meyer, H., Vanden Berghe, G. and Van Daele, M. (1996). A regularization procedure for Ein (z,)x, = g(z3)(j = 1,2, n). Numer Linear Algebra AppL, 3: 81–90.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Equations. Wiley, New York.Google Scholar
  8. [8]
    Lyche, T. (1974). Chebyshevian multistep methods for ordinary differential equations. Nu-mer Math., 19: 65–75.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Phillips, J. M. and Taylor, P. J. (1973). Theory and Applications of Numerical Analysis. Academic Press. London and New York.zbMATHGoogle Scholar
  10. [10]
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1986). Numerical Recipes, The Art of Scientific Computing. Cambridge University Press, Cambridge.Google Scholar
  11. [11]
    Wolfram, S. (1992). MATHEMATICA A system for doing mathematics by computer, Addison—Wesley, Reading.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Liviu Gr. Ixaru
    • 1
  • Guido Vanden Berghe
    • 2
  1. 1.“Horia Hulubei”, Department of Theoretical PhysicsNational Institute for Research and Development for Physics and Nuclear EngineeringBucharestRomania
  2. 2.Department of Applied Mathematics and Computer ScienceUniversity of GentGentBelgium

Personalised recommendations