Advertisement

Short-Latency Eye Movements: Evidence for Rapid, Parallel Processing of Optic Flow

  • F. A. Miles
  • C. Busettini
  • G. S. Masson
  • D. S. Yang
Chapter
Part of the Synthese Library book series (SYLI, volume 324)

Abstract

As we go about our daily activities we view the world from a constantly shifting platform and some visual functions are compromised if the images on the retina are not reasonably stable. For example, visual acuity begins to deteriorate when retinal image speeds exceed a few degrees per second (Westheimer & McKee, 1975). There are a number of visual reflexes that help to stabilize our gaze on particular objects of interest by generating eye movements to offset our head movements. However, it is important to remember that these visual mechanisms normally operate in close synergy with vestibuloöcular reflexes that rely on two types of end-organ embedded in the base of the skull: the semicircular canals, which are selectively sensitive to angular accelerations of the head, and the otolith organs, which are selectively sensitive to linear accelerations (Goldberg & Fernandez, 1975). Thus, the vestibular end-organs decompose head movements into their angular and linear components and support two quite independent reflexes, the RVOR and TVOR, that compensate selectively for rotational and translational disturbances of the head respectively with latencies <10 msec. These vestibular reflexes operate open-loop—because their output, eye movement, does not influence their input, head movement—and neither is perfect, hence motion of the observer must often be associated with some residual retinal image motion and this is where the visual stabilization mechanisms become involved. However, the visual end-organs — the two retinas — see all visual disturbances, regardless of whether they result from rotation and/or translation of gaze so that if any visual decomposition is to be done it must be by signal processing in the central nervous system (CNS). It is our contention that the visual system does attempt to perform such decomposition, using visual filters to sense the pattern of optic flow and thereby infer the observer’s motion and the eye movements that best compensate for that motion.

Keywords

Optic Flow Binocular Disparity Ocular Response Vergence Angle Medial Superior Temporal Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borst, A., & Egelhaaf, M. (1993). Detecting visual motion: Theory and models. In F. A. Miles, & J. Wallman (Eds.), Visual Motion and its Role in the Stabilization of Gaze. pp. 3–27: Elsevier Science Publishers BV.Google Scholar
  2. Busettini, C., FitzGibbon, E. J., & Miles, F. A. (2001). Short-latency disparity vergence in humans. J. Neurophysiol., 85, 1129–1152.PubMedGoogle Scholar
  3. Busettini, C., Masson, G. S., & Miles, F. A. (1996a). A role for stereoscopic depth cues in the rapid visual stabilization of the eyes. Nature, 380, 342–345.PubMedCrossRefGoogle Scholar
  4. Busettini, C., Masson, G. S., & Miles, F. A. (1997). Radial optic flow induces vergence eye movements with ultra-short latencies. Nature, 390, 512–515.PubMedCrossRefGoogle Scholar
  5. Busettini, C., Miles, F. A., & Krauzlis, R. J. (1996b). Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement. J. Neurophysiol., 75, 1392–1410.PubMedGoogle Scholar
  6. Busettini, C., Miles, F. A., & Schwarz, U. (1991). Ocular responses to translation and their dependence on viewing distance. II. Motion of the scene. J. Neurophysiol., 66, 865–878.PubMedGoogle Scholar
  7. Busettini, C., Miles, F. A., Schwarz, U., & Carl, J. R. (1994). Human ocular responses to translation of the observer and of the scene: dependence on viewing distance. Exp. Brain Res., 100, 484–494.PubMedCrossRefGoogle Scholar
  8. Cohen, B., Matsuo, V., & Raphan, T. (1977). Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J. Physiol. Lond., 270, 321–344.PubMedPubMedCentralGoogle Scholar
  9. Dubois, M. F. W., & Collewijn, H. (1979). Optokinetic reactions in man elicited by localized retinal stimuli. Vision Res?, 19, 1105–1115.PubMedCrossRefGoogle Scholar
  10. Duffy, C. J. (2000). Optic flow analysis for self-movement perception. Int. Rev. Neurobiol., 44, 199–218.PubMedCrossRefGoogle Scholar
  11. Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J. Neurophysiol., 65, 1346–1359.PubMedGoogle Scholar
  12. Duffy, C. J., & Wurtz, R. H. (1995). Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci., 15, 5192–5208.PubMedGoogle Scholar
  13. Duffy, C. J., & Wurtz, R. H. (1997a). Medial superior temporal area neurons respond to speed patterns in optic flow. J. Neurosci., 17, 2839–2851.PubMedGoogle Scholar
  14. Duffy, C. J., & Wurtz, R. H. (1997b). Multiple temporal components of optic flow responses in MST neurons. Exp. Brain Res., 114, 472–482.PubMedCrossRefGoogle Scholar
  15. Duffy, C. J., & Wurtz, R. H. (1997c). Planar directional contributions to optic flow responses in MST neurons. J. Neurophysiol., 77, 782–796.PubMedGoogle Scholar
  16. Eifuku, S., & Wurtz, R. H. (1999). Response to motion in extrastriate area MSTl: disparity sensitivity. J. Neurophysiol., 82, 2462–2475.PubMedGoogle Scholar
  17. Erkelens, C. J., & Collewijn, H. (1985a). Eye movements and stereopsis during dichoptic viewing of moving random-dot stereograms. Vision Res?, 25, 1689–1700.PubMedCrossRefGoogle Scholar
  18. Erkelens, C. J., & Collewijn, H. (1985b). Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Res?, 25, 583–588.PubMedCrossRefGoogle Scholar
  19. Erkelens, C. J., & Regan, D. (1986). Human ocular vergence movements induced by changing size and disparity. J. Physiol. Lond., 379, 145–169.PubMedPubMedCentralGoogle Scholar
  20. Gellman, R. S., Carl, J. R., & Miles, F. A. (1990). Short latency ocular-following responses in man. Vis. Neurosci., 5, 107–122.PubMedCrossRefGoogle Scholar
  21. Gibson, J. J. (1950). The Perception of the Visual World. Boston: Houghton Mifflin.Google Scholar
  22. Gibson, J. J. (1966). The Senses Considered as Perceptual Systems. Boston: Houghton Mifflin.Google Scholar
  23. Goldberg, J. M., & Fernandez, C. (1975). Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol?, 80, 101–110.PubMedCrossRefGoogle Scholar
  24. Howard, I. P., & Gonzalez, E. G. (1987). Human optokinetic nystagmus in response to moving binocularly disparate stimuli. Vision Res?, 27, 1807–1816.PubMedCrossRefGoogle Scholar
  25. Howard, I. P., & Ohmi, M. (1984). The efficiency of the central and peripheral retina in driving human optokinetic nystagmus. Vision Research, 24, 969–976.PubMedCrossRefGoogle Scholar
  26. Howard, I. P., & Simpson, W. A. (1989). Human optokinetic nystagmus is linked to the stereoscopic system. Exp. Brain Res., 78, 309–314.PubMedCrossRefGoogle Scholar
  27. Inoue, Y., Takemura, A., Suehiro, K., Kodaka, Y., & Kawano, K. (1998). Short-latency vergence eye movements elicited by looming step in monkeys. Neurosci. Res., 32, 185–188.PubMedCrossRefGoogle Scholar
  28. Kawano, K., & Miles, F. A. (1986). Short-latency ocular following responses of monkey. II. Dependence on a prior saccadic eye movement. J. Neurophysiol., 56, 1355–1380.PubMedGoogle Scholar
  29. Keller, E. L., & Khan, N. S. (1986). Smooth-pursuit initiation in the presence of a textured background in monkey. Vision Res?, 26, 943–955.PubMedCrossRefGoogle Scholar
  30. Kimmig, H. G., Miles, F. A., & Schwarz, U. (1992). Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys. J. Neurophysiol., 68, 2147–2164.PubMedGoogle Scholar
  31. Koenderink, J. J. (1986). Optic flow. Vision Res?, 26, 161–179.PubMedCrossRefGoogle Scholar
  32. Lagae, L., Maes, H., Raiguel, S., Xiao, D.-K., & Orban, G. A. (1994). Responses of macaque STS neurons to optic flow components: A comparison of areas MT and MST. J. Neurophysiol., 71, 1597–1626.PubMedGoogle Scholar
  33. Lappe, M., & Hoffmann, K. P. (2000). Optic flow and eye movements. Int. Rev. Neurobiol., 44, 29–47.PubMedCrossRefGoogle Scholar
  34. Lappe, M., Pekel, M., & Hoffmann, K. P. (1998). Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J. Neurophysiol., 79, 1461–1480.PubMedGoogle Scholar
  35. Lisberger, S. G., & Miles, F. A. (1980). Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex. J. Neurophysiol., 43, 1725–1745.PubMedGoogle Scholar
  36. Masson, G. M., Yang, D.-S., & Miles, F. A. (2002). Reversed short-latency ocular following. Vision Res?, 42, 2081–2087.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Masson, G. S., Busettini, C., & Miles, F. A. (1997). Vergence eye movements in response to binocular disparity without depth perception. Nature, 389, 283–286.PubMedCrossRefGoogle Scholar
  38. Masson, G. S., Busettini, C., Yang, D.-S., & Miles, F. A. (2001). Short-latency ocular following in humans: sensitivity to binocular disparity. Vision Res?, 41, 3371–3387.PubMedCrossRefGoogle Scholar
  39. Masson, G. S., & Castet, E. (2002). Parallel motion processing for the initiation of short-latency ocular following in humans. J. Neurosci., 22, 5149–5163.PubMedGoogle Scholar
  40. Masson, G. S., Rybarzyck, Y., Castet, E., & Mestre, D. R. (2000). Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies. Vis. Neurosci., 17, 753–767.PubMedCrossRefGoogle Scholar
  41. Mestre, D. R., & Masson, G. S. (1997). Ocular responses to motion parallax stimuli: the role of perceptual and attentional factors. Vision Res?, 37, 1627–1641.PubMedCrossRefGoogle Scholar
  42. Miles, F. A. (1997). Visual stabilization of the eyes in primates. Curr. Opin. Neurobiol., 7, 867–871.PubMedCrossRefGoogle Scholar
  43. Miles, F. A., & Eighmy, B. B. (1980). Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. J. Neurophysiol., 43, 1406–1425.PubMedGoogle Scholar
  44. Miles, F. A., & Fuller, J. H. (1974). Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey. Brain Res?, 80, 512–516.PubMedCrossRefGoogle Scholar
  45. Miles, F. A., & Kawano, K. (1986). Short-latency ocular following responses of monkey. III. Plasticity. J. Neurophysiol., 56, 1381–1396.PubMedGoogle Scholar
  46. Miles, F. A., Kawano, K., & Optican, L. M. (1986). Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J. Neurophysiol., 56, 1321–1354.PubMedGoogle Scholar
  47. Miles, F. A., Schwarz, U., & Busettini, C. (1991). The parsing of optic flow by the primate oculomotor system. In A. Gorea (Ed.) Representations of Vision: Trends and Tacit Assumptions in Vision Research, vol. pp. 185–199. Cambridge: Cambridge University Press.Google Scholar
  48. Miles, F. A., Schwarz, U., & Busettini, C. (1992). The decoding of optic flow by the primate optokinetic system. In A. Berthoz, W. Graf, & P.P. Vidal (Eds.), The Head -Neck Sensory-Motor System, vol. pp. 471–478. New York: Oxford University Press.CrossRefGoogle Scholar
  49. Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns. In C. Chagas, R. Gattass, & C. Gross (Eds.), Pattern Recognition Mechanisms, vol. New York: Springer Verlag.Google Scholar
  50. Murasugi, C. M., & Howard, I. P. (1989). Up-down asymmetry in human vertical optokinetic nystagmus and afternystagmus: contributions of the central and peripheral retinae. Exp. Brain Res., 77, 183–192.PubMedCrossRefGoogle Scholar
  51. Niemann, T., Lappe, M., Büscher, A., & Hoffmann, K.-P. (1999). Ocular responses to radial optic flow and single accelerated targets in humans. Vision Res?, 39, 1359–1371.PubMedCrossRefGoogle Scholar
  52. Paige, G. D. (1989). The influence of target distance on eye movement responses during vertical linear motion. Exp. Brain Res., 77, 585–593.PubMedCrossRefGoogle Scholar
  53. Paige, G. D., & Tomko, D. L. (1991). Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J. Neurophysiol., 65, 1170–1182.PubMedGoogle Scholar
  54. Perrone, J. A., & Stone, L. S. (1994). A model of self-motion estimation within primate extrastriate visual cortex. Vision Res?, 34, 2917–2938.PubMedCrossRefGoogle Scholar
  55. Perrone, J. A., & Stone, L. S. (1998). Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation. J. Neurosci., 18, 5958–5975.PubMedGoogle Scholar
  56. Regan, D., Erkelens, C. J., & Collewijn, H. (1986). Necessary conditions for the perception of motion in depth. Invest. Ophthal. Vis. Sci., 27, 584–597.PubMedGoogle Scholar
  57. Roy, J. P., Komatsu, H., & Wurtz, R. H. (1992). Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci., 12, 2478–2492.PubMedGoogle Scholar
  58. Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci., 6, 145–157.PubMedGoogle Scholar
  59. Sandini, G., Panerai, F., & Miles, F. A. (2001). The role of inertial and visual mechanisms in the stabilization of gaze in natural and artificial machines. In J.M. Zanker, & J. Zeil (Eds.), Motion Vision: Computational, Neural, and Ecological Constraints, vol. pp. 189–218 ). Berlin: Springer Verlag.CrossRefGoogle Scholar
  60. Schwarz, U., Busettini, C., & Miles, F. A. (1989). Ocular responses to linear motion are inversely proportional to viewing distance. Science, 245, 1394–1396.PubMedCrossRefGoogle Scholar
  61. Schwarz, U., & Miles, F. A. (1991). Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. J. Neurophysiol., 66, 851–864.PubMedGoogle Scholar
  62. Simpson, J. I. (1984). The accessory optic system. Ann. Rev. Neurosci., 7, 13–41.PubMedCrossRefGoogle Scholar
  63. Simpson, J. I., & Graf, W. (1985). The selection of reference frames by nature and its investigators. In A. Berthoz, & G. Melvill Jones (Eds.), Adaptive Mechanisms in Gaze Control: Facts and Theories, vol. pp. 3–16 ). Amsterdam: Elsevier/North-Holland.Google Scholar
  64. Takemura, A., Inoue, Y., & Kawano, K. (2000). The effect of disparity on the very earliest ocular following responses and the initial neuronal activity in monkey cortical area MST. Neurosci. Res., 38, 93–101.PubMedCrossRefGoogle Scholar
  65. Takemura, A., Inoue, Y., & Kawano, K. (2002). Visually driven eye movements elicited at ultra-short latency are severely impaired by MST lesions. Ann. N. Y. Acad. Sci., 956, 456–459.PubMedCrossRefGoogle Scholar
  66. Takemura, A., Inoue, Y., Kawano, K., Quaia, C., & Miles, F. A. (2001). Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. J. Neurophysiol., 85, 2245–2266.PubMedGoogle Scholar
  67. Takemura, A., Kawano, K., Quaia, C., & Miles, F. A. (2002). Population coding in cortical area MST. Ann. N. Y. Acad. Sci., 956, 284–296.PubMedCrossRefGoogle Scholar
  68. Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J. Neurosci., 6, 134–144.PubMedGoogle Scholar
  69. Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol., 62, 626–641.PubMedGoogle Scholar
  70. Westheimer, G., & McKee, S. P. (1975). Visual acuity in the presence of retinal-image motion. J. Opt. Soc. Am., 65, 847–850.PubMedCrossRefGoogle Scholar
  71. Yang, D., Fitzgibbon, E. J., & Miles, F. A. (1999). Short-latency vergence eye movements induced by radial optic flow in humans: dependence on ambient vergence level. J. Neurophysiol., 81, 945–949.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • F. A. Miles
    • 1
  • C. Busettini
    • 1
    • 2
  • G. S. Masson
    • 1
    • 3
  • D. S. Yang
    • 1
    • 4
  1. 1.Laboratory of Sensorimotor ResearchNational Eye InstituteBethesdaUSA
  2. 2.Department of Physiological OpticsUniversity of Alabama at BirminghamBirminhamUSA
  3. 3.Institut de Neurosciences Physiologiques et CognitivesC.N.R.S.MarseilleFrance
  4. 4.Department of OphthalmologyColumbus Children’s HospitalColumbusUSA

Personalised recommendations