Controlling Bipedal Movement Using Optic Flow

  • M. Anthony Lewis
Part of the Synthese Library book series (SYLI, volume 324)


In the 1950’s Gibson pointed out the importance of the flow of the ‘optic array’ (i.e. optic flow), a visual cue arising from relative movement of the environment, in the control of human locomotion (Gibson 1958). Relative motion of the environment can reveal environment structure. His pioneering ideas have influenced generations of experimentalists in the brain and behavioral sciences.


Receptive Field Optic Flow Step Cycle Human Locomotion Obstacle Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastian, J. (1998). Modulation of calcium-dependent postsynaptic depression contributes to an adaptive sensory filter, J. Neurophysiol., 80(6), 3352–3355.Google Scholar
  2. Blakemore, S. J., Goodbody, S. J., & Wolpert, D. M. (1998). Predicting the consequences of our own actions: the role of sensorimotor context estimation, J. Neurosci., 18(18), 7511–8.Google Scholar
  3. Blakemore, S. J., Wolpert, D.M., & Frith C. D. (1999). The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation, Neuroimage 10, 448–459.PubMedCrossRefGoogle Scholar
  4. Coombs, D., Herman, M., Hong, T. H., & Nashman, M. (1998). Real-time obstacle avoidance using central flow divergence, and peripheral flow, Trans. Rob. Automat., 14(1), 49–59.Google Scholar
  5. Franceschini, N., Pichon, J. M., & Blanes C. (1992). From insect vision to robot vision, Phil. Trans. R. Soc. Lond. B, 337, 283–294.CrossRefGoogle Scholar
  6. Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals, Br. J. Psychol., 49, 182–194.PubMedCrossRefGoogle Scholar
  7. Harrison, R. R. (2000). An analog VLSI motion sensor based on the fly visual system, CNS, Pasadena, California Institute of Technology.Google Scholar
  8. Lazzaro, J. & Wawrzynek, J. (1995). A multi-sender asynchronous extension to the AER protocol, Proceedings of 1995 Conference on Advanced Research in VLSI.Google Scholar
  9. Lee, D. N. & Young, D. S. (1986). Gearing action to the environment, Exp. Brain Res., 15, 217–230.Google Scholar
  10. Lewis, M. A. (1998). Visual navigation in a robot using zig-zag behavior, Advances in Neural Information Processing Systems (NIPS* 10 ), 10, 822–828.Google Scholar
  11. Lewis, M. A. (1999). Egomotion computation using template matching and inner product of optic flow filter, Conference on Information Sciences and Systems, Baltimore, MD.Google Scholar
  12. Lewis, M. A. & Nelson, M. E. (1998). Look before you leap: peering behavior for depth perception, Simulation of Adaptive Behavior, Zurich.Google Scholar
  13. Lewis, M. A. & Simó, L. S. (1999). Elegant stepping: a model of visually triggered gait adaptation, Connect. Sci., 11 (3/4), 331–344.CrossRefGoogle Scholar
  14. Lewis, M. A. & Simó, L. S. (2001). Certain principles of biomorphic robots, Auton. Rob., 11(3), 221–226.Google Scholar
  15. Patla, A. E. (1997). Understanding the roles of vision in the control of human locomotion, Gait Post., 5, 54–69.CrossRefGoogle Scholar
  16. Sobey, P. J. (1996). Active navigation with a monocular robot, Biol. Cybern., 71, 443–440.Google Scholar
  17. Srinivasan, M. V. & Venkatesh, S. (1997). From Living Eyes to Seeing Machines. UK: Oxford University Press.Google Scholar
  18. Weber, K., Venkatesh, S. & Srinivasan, M. V. (1996). Insect inspired behaviors for the autonomous control of mobile robots, Proceedings of the 13th International Conference on Pattern Recognition.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. Anthony Lewis
    • 1
  1. 1.Iguana Robotics, Inc.UrbanaUSA

Personalised recommendations