Skip to main content

Glacial-Interglacial CO 2 Variations

  • Conference paper
The Ocean Carbon Cycle and Climate

Part of the book series: NATO Science Series ((NAIV,volume 40))

  • 660 Accesses

Abstract

Earth’s climate undergoes variations on a wide range of time scales, from seasonal and interannual to glacial-interglacial and beyond. These variations are revealed in a variety of proxy records collected from ice-cores, ocean sediments and other sources (Bradley, 1999; Duplessy, 1999). The glacialinterglacial cycles are among the most striking phenomena in climate dynamics. While we are now at an interglacial, the last ice age was at its peak only about 20,000 years ago. Ice sheets covered much of North America and Europe, global average temperature was about 6° colder than today, and sea level was about 120 meters lower below today’s. Various paleoclimate proxies (Petit et al., 1999; Imbrie et al., 1984) indicate that during the past 800,000 years or so (the late Pleistocene), the glacial-interglacial cycles were characterized by a pronounced 100,000 year (100 kyr) time scale, with additional weaker spectral peaks at 41 and 23 kyr (Figure 1) and an asymmetric saw-tooth structure (the slow build-up of the land glaciers and the relatively abrupt melting).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley, R. B., Brook, E. J., and S. Anandakrishnan, A northern lead in the orbital band: northsouth phasing of ice-age events. Quat. Sci. Rev., 21:431–441, 2002.

    Article  Google Scholar 

  • Anderson, D. M. and D. Archer, Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature, 416:70–73, 2002.

    Article  Google Scholar 

  • Anderson, L. and J. Sarmiento, Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8:65–80, 1994.

    Article  Google Scholar 

  • Archer, D., Eshel, G., Winguth, A., Broecker, W., Pierrehumbert, R., Tobis, M., and R. Jacob, Atmospheric pCO 2 sensitivity to the biological pump in the ocean. Global Biogeochem. Cycles, 14:1219–1230, 2000a.

    Article  Google Scholar 

  • Archer, D. and E. Maier-Reimer, Effect of deep-sea sedimentary calcite preservation on atmospheric CO 2 concentration. Nature, 367:260–263, 1994.

    Article  Google Scholar 

  • Archer, D., Winguth, A., Lea, D., and N. Mahowald, What caused the glacial/interglacial atmospheric pCO 2 cycles? Rev. Geophys., 38:159–189, 2000b.

    Article  Google Scholar 

  • Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M., and M. P. Lizotte, Phytoplankton community structure and the drawdown of nutrients and CO 2 in the Southern Ocean. Science, 283:365–367, 1999.

    Article  Google Scholar 

  • Asher, W. and R. Wanninkhof, Transient tracers and air-sea gas transfer. J. Geophys. Res., 103:15939–15958, 1998.

    Article  Google Scholar 

  • Bacastow, R., The effect of temperature change of the warm surface waters of the ocean on atmospheric CO 2. Global Biogeochem. Cycles, 10:319–333, 1996.

    Article  Google Scholar 

  • Bates, N. and L. Merlivat, The influence of short-term wind variability on air-sea CO 2 exchange. Geophys. Res. Lett., 28:3281–3284, 2001.

    Article  Google Scholar 

  • Berger, A., Loutre, M. F., and H. Gallee, Sensitivity of the LLN climate model to the astronomical and CO 2 forcings over the last 200 ky. Clim. Dyn., 14:615–629, 1998.

    Article  Google Scholar 

  • Berger, W. and R. Keir, Glacial-Holocene changes in atmospheric CO 2 and the deep-sea records. In Hansen, J. and Takahashi, T., editors, Climate processes and climate sensitivity, volume 29 of Geophysical Monograph Series, 337–351. American Geophysical Union, 1984.

    Chapter  Google Scholar 

  • Bradley, R. S., Paleoclimatology, reconstructing climates of the Quaternary, volume 64 of International Geophysics Series. Academic Press, second edition, 1999.

    Google Scholar 

  • Broecker, W. and G. Henderson, The sequence of events surrounding termination II and their implication for the cause of glacial-interglacial CO 2 changes. Paleoceanography, 13:352–364, 1998.

    Article  Google Scholar 

  • Broecker, W., Lynch-Stieglitz, J., Archer, D., Hofmann, M., Maier-Reimer, E., Marchal, O., Stocker, T., and N. Gruber, How strong is the Harvadton-Bear constraint? Global Biogeochem. Cycles, 13:817–820, 1999.

    Article  Google Scholar 

  • Broecker, W. S. and T. H. Peng, Tracers in the sea. Lamont-Doherty Earth Observatory of Columbia University, 1982.

    Google Scholar 

  • Broecker, W. S. and T. H. Peng, The role of CaCO 3 compensation in the glacial to interglacial CO 2 change. Global Biogeochem. Cycles, 1:15–29, 1987.

    Article  Google Scholar 

  • Broecker, W. S. and T. H. Peng, Greenhouse puzzles. Lamont-Doherty Earth Observatory of Columbia University, second edition, 1998.

    Google Scholar 

  • Clark, P. U. and A. C. Mix, Global change: Ice sheets by volume. Nature, 406:689–690, 2000.

    Article  Google Scholar 

  • Conkright, M., Levitus, S., and T. Boyer, World ocean atlas 1994 volume 1: Nutrients. NOAA Atlas NESDIS 1, U.S. Department of Commerce, Washington, D.C., 1994.

    Google Scholar 

  • Crowley, T. J., Ice age terrestrial carbon change revisited. Global Biogeochem. Cycles, 9:377–389, 1995.

    Article  Google Scholar 

  • Crowley, T. J., Paleomyths I have known, in Holland, W.R, S. Joussaume, and F. David, Editors, Modeling the earth’s climate and its variability, 377–422, NATO ASI Series. Elsevier, 1999.

    Google Scholar 

  • Duplessy, J., Past Climate Changes, in Holland, W.R, S. Joussaume, and F. David, Editors, Modeling the earth’s climate and its variability, 315–376, NATO ASI Series. Elsevier, 1999.

    Google Scholar 

  • Evans, G. T. and Parslow, J. S. A model of annual plankton cycles. Biological Oceanography, 3:327–347, 1985.

    Google Scholar 

  • Falkowski, P., Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean. Nature, 387:272–275, 1997.

    Article  Google Scholar 

  • Falkowski, P., Scholes, R., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. B., Moore, B. M., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and W. Steffen, The global carbon cycle: A test of our knowledge of earth as a system. Science, 290:291–296, 2000.

    Article  Google Scholar 

  • Fischer, H., Wahlen, M., Smith, J., Mastroianni, D., and B. Deck, Ice core records of atmospheric CO 2 around the last three glacial terminations. Science, 283:712–714, 1999.

    Article  Google Scholar 

  • Follows, M., Ito, T., and J. Marotzke, The wind-driven, subtropical gyres and the solubility pump of CO 2. Global Biogeochem. Cycles, 16 (4): Art. No. 1113, 2002.

    Google Scholar 

  • Francis, R., Hare, S., Hollowed, A., and W. Wooster, Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr., 7:1–21, 1998.

    Article  Google Scholar 

  • Franck, V. M., Brzezinski, M. A., Coale, K. H., and D. M. Nelson, Iron and silicic acid concentrations regulate si uptake north and south of the polar frontal zone in the pacific sector of the Southern Ocean. Deep-Sea Res., 47:3315–3338, 2000.

    Article  Google Scholar 

  • Francois, R., Altabet, M. A., Yu, E., Sigman, D. M., Bacon, M. P., Frank, M., Bohrmann, G., Bareille, G., and L. D. Labeyrie, Contribution of Southern Ocean surface-water stratification to low atmospheric CO 2 concentrations during the last glacial perios. Nature, 389:929–935, 1997.

    Article  Google Scholar 

  • Gargett, A., Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42:359–393, 1984

    Article  Google Scholar 

  • Ghil, M., Cryothermodynamics: the chaotic dynamics of paleoclimate. Physica D, 77:130–159, 1994.

    Article  Google Scholar 

  • Gildor, H. and M. Ghil, Phase relations between climate proxy records: Potential effect of seasonal precipitation changes. Geophys. Res. Lett. , Art. No. 1024, 2002.

    Google Scholar 

  • Gildor, H. and E. Tziperman, Sea ice as the glacial cycles climate switch: role of seasonal and orbital forcing. Paleoceanography, 15:605–615, 2000.

    Article  Google Scholar 

  • Gildor, H. and E. Tziperman, Physical mechanisms behind biogeochemical glacial-interglacial CO 2 variations. Geophys. Res. Lett., 28:2421–2424, 2001a.

    Article  Google Scholar 

  • Gildor, H. and E. Tziperman, A sea-ice climate-switch mechanism for the 100 kyr glacial cycles. J. Geophys. Res., 106:9117–9133, 2001b.

    Article  Google Scholar 

  • Gildor, H., Tziperman, E., and J. R. Toggweiler, The sea-ice switch mechanism and glacialinterglacial CO 2 variations. Global Biogeochem. Cycles, Art. No. 1032, 2002.

    Google Scholar 

  • Gnanadesikan, A., A simple predictive model for the structure of the oceanic pycnocline. Science, 283:2077–2079, 1999.

    Article  Google Scholar 

  • Gordon, A., Seasonality of Southern Ocean sea ice. J. Geophys. Res., 86:4193–4197, 1981.

    Article  Google Scholar 

  • Harrison, K. G., Role of increased marine silica input on paleo-pCO 2 levels. Paleoceanography, 15:292–298, 2000.

    Article  Google Scholar 

  • Heinze, C., Maier-Reimer, E., and K. Winn, Glacial pCO 2 reduction by the world ocean: experiments with the Hamburg carbon model. Paleoceanography, 4:395–430, 1991.

    Article  Google Scholar 

  • Holligan, P. M. and J. E. Robertson, Significance of ocean carbonate budgets for the global carbon cycle. Global Change Biology, 2:85–95, 1996.

    Article  Google Scholar 

  • Imbrie, J., Hays, J., Martinson, D., McIntyre, A., Mix, A., Morley, J., Pisias, N., Prell, W., and N. Shackleton, The orbital theoty of Pleistocene climate: Support from a revised chronology of the marine δ180 record, in Milankovitch and Climate, Part I, 269–305. D. Reidel, 1984.

    Google Scholar 

  • Kallen, E., Crafoord, C., and M. Ghil, Free oscillations in a climate model with ice-sheet dynamics. J. Atmos. Sci., 36:2292–2303, 1979.

    Article  Google Scholar 

  • Karl, D., A sea of change: Biogeochemical variability in the North Pacific subtropical gyre. Ecosystems, 2:181–214, 1999.

    Article  Google Scholar 

  • Keir, R. S., Are atmospheric CO 2 content and Pleistocene climate connected by wind-speed over a polar Mediterranean-Sea. Global And Planetary Change, 8:59–68, 1993a.

    Article  Google Scholar 

  • Keir, R. S., Cold surface ocean ventilation and its effect on atmospheric CO 2. J. Geophys. Res., 98:849–856, 1993b.

    Article  Google Scholar 

  • LeGrand, P. and K. Alverson, Variations in atmospheric CO 2 during glacial cycles from an inverse ocean modeling perspective. Paleoceanography, 16:604–616, 2001.

    Article  Google Scholar 

  • Loutre, M. and A. Berger, No glacial-interglacial cycle in the ice volume simulated under a constant astronomical forcing and a variable CO 2. Geophys. Res. Lett. , 27:783–786, 2000.

    Article  Google Scholar 

  • Maier-Reimer, E., Geochemical cycles in an ocean general circulation model. preindustrial tracer distribution. Global Biogeochem. Cycles, 7:645 77, 1993.

    Article  Google Scholar 

  • Martin, J. H., Glacial-interglacial CO 2 change: the iron hypothesis. Paleoceanography, 5:1–13, 1990.

    Article  Google Scholar 

  • Matsumoto, K., Sarmiento, J. L., and M. A. Brzezinski, Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO 2. Global Biogeochem. Cycles, 16, Art. No.-1031, 2002.

    Google Scholar 

  • Milliman, J. D., Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochem. Cycles, 7:927–957, 1993.

    Article  Google Scholar 

  • Mitrovica, J. X., Recent controversies in predicting post-glacial sea-level change. Quat. Sci. Rev., 22:127–133, 2003.

    Article  Google Scholar 

  • Mix, A. C., Bard, E., and R. Schneider, Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev., 20:627–657, 2001.

    Article  Google Scholar 

  • Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., and J. Barnola, Atmospheric CO 2 concentartions over the last glacial termination. Science, 291:112–114, 2001.

    Article  Google Scholar 

  • Maqueda, M. A. M. and S. Rahmstorf, Did antarctic sea-ice expansion cause glacial CO 2 decline? Geophys. Res. Lett., 29, Art. No. 1011, 2002.

    Google Scholar 

  • Mudelsee, M., The phase relations among atmospheric CO 2 content, temperature and global ice volume over the past 420 ka. Quat. Sci. Rev., 20:583–589, 2001.

    Article  Google Scholar 

  • Najjar, R. G., Marine biogeochemistry. In Trenberth, K. E., editor, Climate System Modeling, 241–280. Cambridge Univ. Press, 1991.

    Google Scholar 

  • Opdyke, B. N. and J. C. G. Walker, Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO 3 and its effect on atmospheric CO 2. Geology, 20:733–736, 1992.

    Article  Google Scholar 

  • Oschlies, A., Model-derived estimates of new production: New results point towards lower values. Deep-Sea Res., 48:2173–2197, 2001.

    Article  Google Scholar 

  • Pedersen, T. and P. Bertrand, Influence of oceanic rheostats and amplifiers on atmopsheric CO 2 content during the Late Quaternary. Quat. Sci. Rev., 19:273–283, 2000.

    Article  Google Scholar 

  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399:429–436, 1999.

    Article  Google Scholar 

  • Pilson, M. E. Q., An introduction to the chemistry of the sea. Prentice Hall, 1998.

    Google Scholar 

  • Raven, J. and P. Falkowski, Oceanic sinks for atmospheric CO 2. Plant Cell And Environment, 22:741–755, 1999.

    Article  Google Scholar 

  • Redfield, A., Ketchum, B., and F. Richards, The influence of organisms on the composition of sea water. In Hill, M., editor, The Sea, Vol 2, 26–77. Interscience, New York, 1963.

    Google Scholar 

  • Roemmich, D. and J. McGown, Climatic warming and the decline of zooplankton in the California current. Science, 267:1324–1326, 1995.

    Article  Google Scholar 

  • Saltzman, B. and M. Verbitsky, CO 2 and glacial cycles. Nature, 367:419, 1994.

    Article  Google Scholar 

  • Sanyal, A. N., Hemming, G., Hanson, G. H., and W. S. Broecker, Evidence for a higher pH in thé glacial ocean from boron isotopes in foraminifera. Nature, 373:234–236, 1995.

    Article  Google Scholar 

  • Sarmiento, J., Ocean carbon-cycle. Chemical and Engineering News, 71:30–43, 1993.

    Article  Google Scholar 

  • Sarmiento, J. L. and M. Bender, Carbon biogeochemistry and climate change. Photosynthesis Research, 39:209–234, 1994.

    Article  Google Scholar 

  • Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and S. Manabe, Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393:245–252, 1998.

    Article  Google Scholar 

  • Sarmiento, J. L. and J. R. Toggweiler, A new model for the role of the oceans in determining atmospheric pCO 2. Nature, 308:621–624, 1984.

    Article  Google Scholar 

  • Schrag, D., Hampt, G., and D. Murray, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science, 272:1930–1932, 1996.

    Article  Google Scholar 

  • Siegenthaler, U. and J. Sarmiento, Atmospheric carbon dioxide and the ocean. Nature, 365:119–125, 1993.

    Article  Google Scholar 

  • Siegenthaler, U. and T. Wenk, Rapid atmospheric CO 2 variations and ocean circulation. Nature, 308:624–625, 1984.

    Article  Google Scholar 

  • Sigman, D. M. and E. A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407:859–869, 2000.

    Article  Google Scholar 

  • Sigman, D. M., McCorkle, D. C., and W. R. Martin, The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Global Biogeochem. Cycles, 12:409–427, 1998.

    Article  Google Scholar 

  • Sikes, E. L., Samson, C. R., Guilderson, T. P., and W. R. Howard, Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature, 405:555–559, 2000.

    Article  Google Scholar 

  • Stephens, B. B. and R. Keeling, The influence of Antarctic sea ice on glacial-interglacial CO 2 variations. Nature, 404:171–174, 2000.

    Article  Google Scholar 

  • Stommel, H., Thermohaline convection with two stable regimes of flow. Tellus, 13:224–230, 1961.

    Article  Google Scholar 

  • Takahashi, T., Broecker, W., and S. Langer, Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res., 90:6907–6924, 1985.

    Article  Google Scholar 

  • Takahashi, T., Feely, R. A., Weiss, R. E, Wanninkhof, R. H., Chipman, D. W., Sutherland, S. C., and T. T. Takahashi, Global air-sea flux of CO 2: An estimate based on measurements of sea-air p C O 2 difference. Proc. Natl. Acad. Sci. U.S.A. , 94:8292–8299, 1997.

    Article  Google Scholar 

  • Takeda, S., Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393:774–777, 1998.

    Article  Google Scholar 

  • Taylor, J., Tranter, M., and G. Munhoven, Carbon cycling and burial in the glacially influenced polar North Atlantic. Paleoceanography, 17, Art. No. 1001, 2002.

    Google Scholar 

  • Taylor, N., The role of the ocean in the global carbon cycle. Part 2: Climate feedbacks. Weather, 47:237–241, 1992.

    Article  Google Scholar 

  • Toggweiler, J. R., Variation of atmospheric CO 2 by ventilation of the ocean’s deepest water. Paleoceanography, 14:572–588, 1999.

    Article  Google Scholar 

  • Toggweiler, J. R., Gnanadesikan, A., Carson, S., Murnane, R., and J. L. Sarmiento, Representation of the carbon cycle in box models and GCMs: 1. Solubility pump. Global Biogeochem. Cycles, 17, Art. No.-1026, 2003a.

    Google Scholar 

  • Toggweiler, J. R., Murnane, R., Carson, S., Gnanadesikan, A., and J. L. Sarmiento, Representation of the carbon cycle in box models and GCMs: 2. Organic pump. Global Biogeochem. Cycles, 17, Art. No.-1027, 2003b.

    Google Scholar 

  • Toggweiler, J. R. and B. Samuels, Is the magnitude of the deep outflow from the Atlantic ocean actually governed by the southern hemisphere winds? In Heimann, M., editor, The Global Carbon Cycle, 303–331. NATO ASI Series, Springer-Verlag, Berlin, 1993.

    Chapter  Google Scholar 

  • Treguer, P. and P. Pondaven, Silica control of carbon dioxide. Nature, 406:358–359, 2000.

    Article  Google Scholar 

  • Volk, T. and M. Hoffert, Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO 2 changes. In Sundquist, E. T. and Broecker, W. S., editors, The carbon cycle and atmospheric CO 2: natural variations Archean to present, volume 32 of Geophysical monograph, pages 99–110. American Geophysical Union, 1985.

    Google Scholar 

  • Weaver, A. J., Eby, M., Fanning, A., and E. C. Wiebe, Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature, 394:847–853, 1998.

    Article  Google Scholar 

  • Weertman, J., Milankovitch solar radiation variations and ice age ice sheet sizes. Nature, 261:17–20, 1976.

    Article  Google Scholar 

  • Weiss, R. F., Carbon dioxide in water and sea water: the solubility of non-ideal gas. Mar. Chem., 2:203–215, 1974.

    Article  Google Scholar 

  • Whitfield, M., Ocean biology, trace metals and climate, in Modeling oceanic climate interaction, 337–371. NATO ASI Series, Springer-Verlag, 1993.

    Chapter  Google Scholar 

  • Zeebe, R. and D. Wolf-Gladrow, CO 2 in seawater: equilibrium, kinetics, isotopoes, volume 65 of Elsevier Oceanography Series. Elsevier, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gildor, H. (2004). Glacial-Interglacial CO 2 Variations. In: Follows, M., Oguz, T. (eds) The Ocean Carbon Cycle and Climate. NATO Science Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2087-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2087-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2086-5

  • Online ISBN: 978-1-4020-2087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics