Skip to main content

Comparative Morphometric Study on Bone Remodeling in Human Specimens and in Experimental Models of Metastatic Bone Disease

  • Chapter
Bone Metastasis and Molecular Mechanisms

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 6))

  • 160 Accesses

Abstract

Metastatic cancer is the most common malignant tumor affecting bone and is accompanied by significant clinical morbidity, including pain, osteolysis, pathological fracture, spinal compression syndromes and hypercalcemia. Bone destruction is a marked clinical feature and the major source of morbidity associated with bone metastases. Most of these clinical features can be related to structural changes in bone that are caused by effects of the tumor on normal processes of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coleman RE. Skeletal complications of malignancy. Cancer, 80: 1588–1594, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Vigorita VJ. Metastatic bone disease, pp. 472–489. In: Orthopaedic Pathology. V. H. Vigorita eds., Philadelphia, New York, Baltimore: Lippincott William and Wilkins, 1999.

    Google Scholar 

  3. Vinholes J, Coleman R, Eastell R. Effects of bone metastases on bone metabolism: implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev, 22: 289–331, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Parfitt AM. Bone remodeling, normal and abnormal: a biological basis for the understanding of cancer-related bone disease and its treatment. Can J Oncol, 5 (Suppl. l): 1–10, 1995.

    PubMed  Google Scholar 

  5. Hiraga T, Tanaka S, Ikegame M, Koizumi M, Iguchi H, Nakajima T, Ozawa H. Morphology of bone metastasis. Eur J Cancer, 34: 230–239, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Mundy GR. Mechanism of bone metastasis. Cancer, 80 (Suppl 8): 1546–1556, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Galasko CSB. Mechanism of lytic and blastic metastatic disease of bone. Clin Orthop, 169: 20–27, 1982.

    PubMed  Google Scholar 

  8. Kulenkampff HA, Dreyer T, Kersjes W, Delling G. Histomorphometric analysis of osteoclastic bone resorption in metastatic bone disease from various primary malignomas. Virchows Arch. [Pathol Anat], 409: 817–828, 1986.

    Article  CAS  Google Scholar 

  9. Kleerekoper M, Villanueva AR, Stanciu J, Sudhaker Rao D, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int, 37: 594–597, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Tsuchida T, Sato K, Miyakoshi N, Abe T, Kudo T, Kasukawa Y, Suzuki K. Histomorphometric evaluation of the recovering effect of human parathyroid hormone (1–34) on bone structure and turnover in streptozotocin-induced diabetic rats. Calcif Tissue Int, 66: 229–233, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Bross P, Reynders P, Vanderschot P. Surgical treatment of the metastatic fracture of the femur improves quality of life. Acta Orthop Belg, 59 (Suppl 1): 52–56, 1993.

    Google Scholar 

  12. Vukmirovic-Popovic S, Colterjohn N, Lhotak S, Duivenvoorden WC, Orr FW, Singh G. Morphological, histomorphometric, and microstructural alterations in human bone metastasis from breast carcinoma. Bone, 31: 529–535, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Coindre JM, Mage P, Bui BN, Goussot JF, De Mascarel A, Trojani M. Prostatic osteocondensing metastases and osteomalacia. Value of histomorphometric study. Preliminary results. Presse Med, 14: 1823–1827, 1985.

    PubMed  CAS  Google Scholar 

  14. Hiraga T, Mundy GR, Yoneda T. Bone metastases-morphology, pp. 65–74. In: Cancer and the Skeleton. R. D. Rubens and G. R. Mundy eds, London: Martin Dunitz Ltd, 2000.

    Google Scholar 

  15. Yamaguchi T, Tamai K, Yamato M, Honma K, Ueda Y, Saotome K. Intertrabecular pattern of tumours metastatic to bone. Cancer, 78: 1388–1394, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Fornasier VL, Horne JG. Metastases to the vertebral column. Cancer, 36: 590–594, 1975.

    Article  PubMed  CAS  Google Scholar 

  17. McCarthy EF, Frassica FJ. Metastatic carcinoma in bone, pp. 175–183. In: Pathology of bone and joint disorders with Clinical and Radiographic Correlation. McCarthy EF, Frassica FJ, eds, Philadelhia, PA: W. B. Saunders, 1998.

    Google Scholar 

  18. Clarke NW, McClure J, George NJR. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol, 68: 74–80, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Arguello FB, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res, 48: 6876–6881, 1988.

    PubMed  CAS  Google Scholar 

  20. Yoneda T. Arterial microvascularization and breast cancer colonization in bone. Histol Histopathol, 12: 1145–1149, 1997.

    PubMed  CAS  Google Scholar 

  21. Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T. Action of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer, 88: 2979–2988, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res, 55: 3551–3557, 1995.

    PubMed  CAS  Google Scholar 

  23. Sasaki A, Kitamura K, Alcalde RE, Tanaka T, Suzuki A, Etoh Y, Matsumura T. Effect of a newly developed bisphosphonate, YH529, on osteolytic bone metastases in nude mice. Int J Cancer, 77: 279–285, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Nemeth JA, Harb JF, Barroso U Jr, He Z, Grignon DJ, Cher ML. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res, 59: 1987–1993, 1999.

    PubMed  CAS  Google Scholar 

  25. Nemeth JE, Yousif R, Herzog M, Che M, Upadhyay J, Shekarriz B, Bhagat S, Mullins C, Fridman R, Cher ML. Matrix metalloproteinase activity, bone matrix turnover, and tumour cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst, 94: 17–25, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Rabbani SA, Harakidas P, Davidson DJ, Henkin J, Mazar AP. Prevention of prostate-cancer metastasis in vivo by novel synthetic inhibitor of urokinase-type plasminogene activator (uPA). Int J Cancer, 63: 840–845, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Sweatman OH, Lee J, Orr FW, Singh G. Direct osteolysis induced by metastatic murine melanoma cells: of matrix metalloproteinases. Eur J Cancer, 33: 918–925, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Duivenvoorden WC, Vukmirovic Popovic S, Lhotak S, Seidlitz E, Hirte H W, Tozer RG, Singh G. Doxycycline decreases tumour burden in a bone metastasis model of human breast cancer. Cancer Res, 62: 1588–1591, 2002.

    PubMed  CAS  Google Scholar 

  29. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Min Res, 2: 595–610, 1987.

    Article  CAS  Google Scholar 

  30. Parfitt AM. Stereological basis of bone histomorphometry: Theory of quantitative microscopy and reconstruction of the third dimension, pp. 61–64. In: Bone histomorphometry: techniques and interpretation. R. R. Recker eds., Florida: Boca Raton, CRC Press, 1982.

    Google Scholar 

  31. Parfitt AM, Mathews CH, Villanueva AR, Kleerekope, M, Frame BR. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest, 72: 1396–1409, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Melish RWE, Ferguson-Pell, MW, Cochran GV, Lindsay R, Dempster DW. A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res, 6: 689–696, 1991.

    Article  Google Scholar 

  33. Carbonare LD, Arlot, ME, Chavassieux JP, Roux JP, Portero NR, Meunier PJ. Comparison of trabecular bone microarchitecture and remodeling in glucocorticoidinduced and postmenopausal osteoporosis. J Bone Miner Res, 16: 97–103, 2001.

    Article  CAS  Google Scholar 

  34. Zhang L, Takahashi HE, Inoue J, Tanizawa T, Endo N, Yamamoto N, Hori M. Effect of intermittent administration of low dose human PTH (1–34) on cancellous and cortical bone of lumbar vertebral bodies in adult beagles. Bone, 21: 501–506, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Mundy GR, Guise TA. Pathophysiology of bone metastasis, pp. 43–64. In: Cancer and the Skeleton. Rubens RD, Mundy GR, eds, London: Martin Dunitz, 2000.

    Google Scholar 

  36. Galasko CSB. Mechanism of bone destruction in the development of skeletal metastases. Nature, 263: 507–508, 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Taube T, Beneton MNC, McCloskey EV, Rogers S, Greaves M, Kanis JA. Abnormal bone remodeling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol, 49: 192–198, 1992.

    Article  PubMed  CAS  Google Scholar 

  38. Taube T, Elomaa I, Blomqvist C, Beneton MNC, Kanis JA. Comparative effects of clodronate and calcitonin on bone in metastatic breast cancer: A histomorphometric study. Eur J Cancer, 29A /12: 1677–1681, 1993.

    Article  Google Scholar 

  39. Taube T, Elomaa I, Blomqvist C, Beneton MNC, Kanis JA. Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15: 161–166, 1994.

    Article  PubMed  CAS  Google Scholar 

  40. Eilon G, Mundy GR. Direct resorption of bone by human breast cancer cells in vitro. Nature, 276: 726–729, 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Sanchez-Swetman OH, Orr FW, Singh G. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis, 18: 297–305, 1998–1999.

    Google Scholar 

  42. Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J, 13: 1219–1230, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vukmirovic-Popovic, S., Seidlitz, E., Orr, F.W., Singh, G. (2004). Comparative Morphometric Study on Bone Remodeling in Human Specimens and in Experimental Models of Metastatic Bone Disease. In: Singh, G., Orr, W. (eds) Bone Metastasis and Molecular Mechanisms. Cancer Metastasis — Biology and Treatment, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2036-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2036-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6563-6

  • Online ISBN: 978-1-4020-2036-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics