Comparative Morphometric Study on Bone Remodeling in Human Specimens and in Experimental Models of Metastatic Bone Disease

  • Snezana Vukmirovic-Popovic
  • Eric Seidlitz
  • F. William Orr
  • Gurmit Singh
Part of the Cancer Metastasis — Biology and Treatment book series (CMBT, volume 6)


Metastatic cancer is the most common malignant tumor affecting bone and is accompanied by significant clinical morbidity, including pain, osteolysis, pathological fracture, spinal compression syndromes and hypercalcemia. Bone destruction is a marked clinical feature and the major source of morbidity associated with bone metastases. Most of these clinical features can be related to structural changes in bone that are caused by effects of the tumor on normal processes of bone remodeling.


Bone Formation Bone Resorption Bone Metastasis Osteoclastic Bone Resorption Metastatic Bone Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman RE. Skeletal complications of malignancy. Cancer, 80: 1588–1594, 1997.PubMedCrossRefGoogle Scholar
  2. 2.
    Vigorita VJ. Metastatic bone disease, pp. 472–489. In: Orthopaedic Pathology. V. H. Vigorita eds., Philadelphia, New York, Baltimore: Lippincott William and Wilkins, 1999.Google Scholar
  3. 3.
    Vinholes J, Coleman R, Eastell R. Effects of bone metastases on bone metabolism: implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev, 22: 289–331, 1996.PubMedCrossRefGoogle Scholar
  4. 4.
    Parfitt AM. Bone remodeling, normal and abnormal: a biological basis for the understanding of cancer-related bone disease and its treatment. Can J Oncol, 5 (Suppl. l): 1–10, 1995.PubMedGoogle Scholar
  5. 5.
    Hiraga T, Tanaka S, Ikegame M, Koizumi M, Iguchi H, Nakajima T, Ozawa H. Morphology of bone metastasis. Eur J Cancer, 34: 230–239, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Mundy GR. Mechanism of bone metastasis. Cancer, 80 (Suppl 8): 1546–1556, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Galasko CSB. Mechanism of lytic and blastic metastatic disease of bone. Clin Orthop, 169: 20–27, 1982.PubMedGoogle Scholar
  8. 8.
    Kulenkampff HA, Dreyer T, Kersjes W, Delling G. Histomorphometric analysis of osteoclastic bone resorption in metastatic bone disease from various primary malignomas. Virchows Arch. [Pathol Anat], 409: 817–828, 1986.CrossRefGoogle Scholar
  9. 9.
    Kleerekoper M, Villanueva AR, Stanciu J, Sudhaker Rao D, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int, 37: 594–597, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuchida T, Sato K, Miyakoshi N, Abe T, Kudo T, Kasukawa Y, Suzuki K. Histomorphometric evaluation of the recovering effect of human parathyroid hormone (1–34) on bone structure and turnover in streptozotocin-induced diabetic rats. Calcif Tissue Int, 66: 229–233, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Bross P, Reynders P, Vanderschot P. Surgical treatment of the metastatic fracture of the femur improves quality of life. Acta Orthop Belg, 59 (Suppl 1): 52–56, 1993.Google Scholar
  12. 12.
    Vukmirovic-Popovic S, Colterjohn N, Lhotak S, Duivenvoorden WC, Orr FW, Singh G. Morphological, histomorphometric, and microstructural alterations in human bone metastasis from breast carcinoma. Bone, 31: 529–535, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Coindre JM, Mage P, Bui BN, Goussot JF, De Mascarel A, Trojani M. Prostatic osteocondensing metastases and osteomalacia. Value of histomorphometric study. Preliminary results. Presse Med, 14: 1823–1827, 1985.PubMedGoogle Scholar
  14. 14.
    Hiraga T, Mundy GR, Yoneda T. Bone metastases-morphology, pp. 65–74. In: Cancer and the Skeleton. R. D. Rubens and G. R. Mundy eds, London: Martin Dunitz Ltd, 2000.Google Scholar
  15. 15.
    Yamaguchi T, Tamai K, Yamato M, Honma K, Ueda Y, Saotome K. Intertrabecular pattern of tumours metastatic to bone. Cancer, 78: 1388–1394, 1996.PubMedCrossRefGoogle Scholar
  16. 16.
    Fornasier VL, Horne JG. Metastases to the vertebral column. Cancer, 36: 590–594, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    McCarthy EF, Frassica FJ. Metastatic carcinoma in bone, pp. 175–183. In: Pathology of bone and joint disorders with Clinical and Radiographic Correlation. McCarthy EF, Frassica FJ, eds, Philadelhia, PA: W. B. Saunders, 1998.Google Scholar
  18. 18.
    Clarke NW, McClure J, George NJR. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol, 68: 74–80, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Arguello FB, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res, 48: 6876–6881, 1988.PubMedGoogle Scholar
  20. 20.
    Yoneda T. Arterial microvascularization and breast cancer colonization in bone. Histol Histopathol, 12: 1145–1149, 1997.PubMedGoogle Scholar
  21. 21.
    Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T. Action of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer, 88: 2979–2988, 2000.PubMedCrossRefGoogle Scholar
  22. 22.
    Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res, 55: 3551–3557, 1995.PubMedGoogle Scholar
  23. 23.
    Sasaki A, Kitamura K, Alcalde RE, Tanaka T, Suzuki A, Etoh Y, Matsumura T. Effect of a newly developed bisphosphonate, YH529, on osteolytic bone metastases in nude mice. Int J Cancer, 77: 279–285, 1998.PubMedCrossRefGoogle Scholar
  24. 24.
    Nemeth JA, Harb JF, Barroso U Jr, He Z, Grignon DJ, Cher ML. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res, 59: 1987–1993, 1999.PubMedGoogle Scholar
  25. 25.
    Nemeth JE, Yousif R, Herzog M, Che M, Upadhyay J, Shekarriz B, Bhagat S, Mullins C, Fridman R, Cher ML. Matrix metalloproteinase activity, bone matrix turnover, and tumour cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst, 94: 17–25, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Rabbani SA, Harakidas P, Davidson DJ, Henkin J, Mazar AP. Prevention of prostate-cancer metastasis in vivo by novel synthetic inhibitor of urokinase-type plasminogene activator (uPA). Int J Cancer, 63: 840–845, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Sanchez-Sweatman OH, Lee J, Orr FW, Singh G. Direct osteolysis induced by metastatic murine melanoma cells: of matrix metalloproteinases. Eur J Cancer, 33: 918–925, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Duivenvoorden WC, Vukmirovic Popovic S, Lhotak S, Seidlitz E, Hirte H W, Tozer RG, Singh G. Doxycycline decreases tumour burden in a bone metastasis model of human breast cancer. Cancer Res, 62: 1588–1591, 2002.PubMedGoogle Scholar
  29. 29.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Min Res, 2: 595–610, 1987.CrossRefGoogle Scholar
  30. 30.
    Parfitt AM. Stereological basis of bone histomorphometry: Theory of quantitative microscopy and reconstruction of the third dimension, pp. 61–64. In: Bone histomorphometry: techniques and interpretation. R. R. Recker eds., Florida: Boca Raton, CRC Press, 1982.Google Scholar
  31. 31.
    Parfitt AM, Mathews CH, Villanueva AR, Kleerekope, M, Frame BR. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest, 72: 1396–1409, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Melish RWE, Ferguson-Pell, MW, Cochran GV, Lindsay R, Dempster DW. A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res, 6: 689–696, 1991.CrossRefGoogle Scholar
  33. 33.
    Carbonare LD, Arlot, ME, Chavassieux JP, Roux JP, Portero NR, Meunier PJ. Comparison of trabecular bone microarchitecture and remodeling in glucocorticoidinduced and postmenopausal osteoporosis. J Bone Miner Res, 16: 97–103, 2001.CrossRefGoogle Scholar
  34. 34.
    Zhang L, Takahashi HE, Inoue J, Tanizawa T, Endo N, Yamamoto N, Hori M. Effect of intermittent administration of low dose human PTH (1–34) on cancellous and cortical bone of lumbar vertebral bodies in adult beagles. Bone, 21: 501–506, 1997.PubMedCrossRefGoogle Scholar
  35. 35.
    Mundy GR, Guise TA. Pathophysiology of bone metastasis, pp. 43–64. In: Cancer and the Skeleton. Rubens RD, Mundy GR, eds, London: Martin Dunitz, 2000.Google Scholar
  36. 36.
    Galasko CSB. Mechanism of bone destruction in the development of skeletal metastases. Nature, 263: 507–508, 1976.PubMedCrossRefGoogle Scholar
  37. 37.
    Taube T, Beneton MNC, McCloskey EV, Rogers S, Greaves M, Kanis JA. Abnormal bone remodeling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol, 49: 192–198, 1992.PubMedCrossRefGoogle Scholar
  38. 38.
    Taube T, Elomaa I, Blomqvist C, Beneton MNC, Kanis JA. Comparative effects of clodronate and calcitonin on bone in metastatic breast cancer: A histomorphometric study. Eur J Cancer, 29A /12: 1677–1681, 1993.CrossRefGoogle Scholar
  39. 39.
    Taube T, Elomaa I, Blomqvist C, Beneton MNC, Kanis JA. Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15: 161–166, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Eilon G, Mundy GR. Direct resorption of bone by human breast cancer cells in vitro. Nature, 276: 726–729, 1978.PubMedCrossRefGoogle Scholar
  41. 41.
    Sanchez-Swetman OH, Orr FW, Singh G. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis, 18: 297–305, 1998–1999.Google Scholar
  42. 42.
    Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. FASEB J, 13: 1219–1230, 1999.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Snezana Vukmirovic-Popovic
    • 1
  • Eric Seidlitz
    • 1
  • F. William Orr
    • 2
  • Gurmit Singh
    • 1
  1. 1.Juravinski Cancer CentreMc Master UniversityHamiltonCanada
  2. 2.Department of PathologyUniversity of ManitobaWinnipegCanada

Personalised recommendations