Skip to main content

Quantitation of Bone Metastasis in Experimental Systems

  • Chapter
Bone Metastasis and Molecular Mechanisms

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 6))

  • 156 Accesses

Abstract

Animal models are important tools to investigate the pathogenesis and develop treatment strategies for bone metastases in humans. However, there are few spontaneous models of bone metastasis despite the fact that rodents (rats and mice) and other animals (dogs and cats) often spontaneously develop cancer. Therefore, most experimental models of bone metastasis in rodents require injection or implantation of neoplastic cells into orthotopic locations, bones, or the left ventricle of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sung V, Cattell DA, Bueno JM, Murray A, Zwiebel JA, Aaron AD, Thompson, EW. Human breast cancer cell metastasis to long bone and soft organs of nude mice: a quantitative assay. Clin Exp Metastasis, 15: 173–183, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Yoneda T, Sasak, A, Dunstan C Williams PJ, Bauss F, De Clerck YA., Mundy GR. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest, 99: 2509–2517, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Stearns ME, Wang M. Effects of alendronate and taxol on PC-3 ML cell bone metastases in SCID mice. Invasion Metastasis, 16: 116–131, 1996.

    PubMed  CAS  Google Scholar 

  4. Kawakami-Kimura N, Narita T, Ohmori K, Yoneda T, Matsumoto K, Nakamura T, Kannagi R. Involvement of hepatocyte growth factor in increased integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br J Cancer, 75: 47–53, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Bord S, Horner A, Hembry RM, Reynolds JJ, Compston JE. Distribution of matrix metalloproteinases and their inhibitor, TIMP-1, in developing human osteophytic bone. J Anat, 191 (Pt 1): 39–48, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Barille S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood, 90: 1649–1655, 1997.

    PubMed  CAS  Google Scholar 

  7. Ueda Y, Imai K, Tsuchiya H, Fujimoto N, Nakanishi I, Katsuda S, Seiki M, Okada Y. Matrix metalloproteinase 9 (gelatinase B) is expressed in multinucleated giant cells of human giant cell tumor of bone and is associated with vascular invasion. Am J Pathol, 148: 611–622, 1996.

    PubMed  CAS  Google Scholar 

  8. Lee J, Weber M, Mejia S, Bone E, Watson P, Orr W. A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDAMB-231 human breast cancer cells in Balb C nu/nu mice. Eur J Cancer, 37: 106–113, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Winding B, NicAmhlaoibh R, Misander H, Hoegh-Andersen P, Andersen TL, Holst-Hansen C, Heegaard AM, Foged NT, Brunner N, Delaisse JM. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice. Clin Cancer Res, 8: 1932–1939, 2002.

    PubMed  CAS  Google Scholar 

  10. Waltham M, Tester A, Ruangpanit N, Bills M, Shalinsky DR, Thompson EW. Prinomastat inhibits primary tumor growth and retards osteolytic disease in xenograft models of breast cancer metastasis. In: 23rd Annual San Antonio Breast Cancer Symposium, San Antonio, TX, Dec 6–9, 2000.

    Google Scholar 

  11. Tester AM, Sharp JA, Dhanesuan N, Waltham M, Thompson, EW. Correlation between extent of osteolytic damage and metastatic burden of human breast cancer metastasis in nude mice: real-time PCR quantitation. Clin Exp Metastasis, 19: 377–383, 2002.

    Article  PubMed  CAS  Google Scholar 

  12. Murphy BO, Joshi S, Kessinger A, Reed E, Sharp JG. A murine model of bone marrow micrometastasis in breast cancer. Clin Exp Metastasis, 19: 561–569, 2002.

    Article  PubMed  Google Scholar 

  13. Clohisy DR, Mantyh PW. Bone cancer pain. Cancer, 97: 866–873, 2003.

    Article  PubMed  Google Scholar 

  14. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia, 1: 303–310, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, AlTuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA, 97: 1206–1211, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Braun S, Pantel K. Micrometastatic bone marrow involvement: detection and prognostic significance. Med Oncol, 16: 154–165, 1999.

    Article  PubMed  CAS  Google Scholar 

  17. Hirsch-Ginsberg C. Detection of minimal residual disease: relevance for diagnosis and treatment of human malignancies. Annu Rev Med, 49: 111–122, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Kostle WJ, Brodowicz T, Hejna M, Wiltschke C, Zielinski CC. Detection of minimal residual disease in patients with cancer: a review of techniques, clinical implications, and emerging therapeutic consequences. Cancer Detect Prev, 24: 376–403, 2000.

    Google Scholar 

  19. Klein CA. The biology and analysis of single disseminated tumor cells. Trends Cell Biol, 10: 489–493, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Lowik CW, Gautschi E, Thalmann GN, Cecchini MG. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol, 160: 1143–1153, 2002.

    Article  PubMed  Google Scholar 

  21. Glaves D. Mechanisms of metastasis: prostate cancer. Prog Clin Biol Res, 239: 329–345, 1987.

    PubMed  CAS  Google Scholar 

  22. Saitoh H, Hida M, Shimbo T, Nakamura K, Yamagata J, Satoh T. Metastatic patterns of prostatic cancer. Correlation between sites and number of organs involved. Cancer, 54: 3078–3084, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch, MJ. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol, 31: 578–583, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Revilla M, Arribas I, Sanchez-Chapado M, Villa LF, Bethencourt F, Rico H. Total and regional bone mass and biochemical markers of bone remodeling in metastatic prostate cancer. Prostate, 35: 243–247, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Akimoto S, Furuya Y, Akakura K, Ito H. Comparison of markers of bone formation and resorption in prostate cancer patients to predict bone metastasis. Endocr J, 45: 97–104, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Takeuchi S, Arai K, Saitoh H, Yoshida, K, Miura M. Urinary pyridinoline and deoxypyridinoline as potential markers of bone metastasis in patients with prostate cancer. J Urol, 156: 1691–1695, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Nemeth JA, Harb JF, Barroso U Jr, He Z, Grignon DJ, Cher ML. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res, 59: 1987–1993, 1999.

    PubMed  CAS  Google Scholar 

  28. Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K, Hatano T, Ogawa Y, Ochiai A. Establishment of a novel species-and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res, 61: 2177–2182, 2001.

    PubMed  CAS  Google Scholar 

  29. Thompson TC, Park SH, Timme TL, Ren C, Eastham JA, Donehower LA, Bradley A, Kadmon D, Yang G. Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene, 10: 869–879, 1995.

    PubMed  CAS  Google Scholar 

  30. Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH. Animal models of bone metastasis. Cancer, 97: 748–757, 2003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharp, J.A., Thompson, E.W. (2004). Quantitation of Bone Metastasis in Experimental Systems. In: Singh, G., Orr, W. (eds) Bone Metastasis and Molecular Mechanisms. Cancer Metastasis — Biology and Treatment, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2036-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2036-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6563-6

  • Online ISBN: 978-1-4020-2036-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics