Skip to main content

Potential Therapeutic Targets for Bone Metastasis

  • Chapter
Bone Metastasis and Molecular Mechanisms

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 6))

Abstract

The mortality and morbidity caused by cancer is largely a result of distant spread of the disease. Certain malignancies have a particular propensity to spread to bone amongst which are the three most common cancers — lung, breast and prostate. Patients with lung cancer are more likely to succumb quickly to their disease than those with breast or prostate tumors in whom, relatively, bone metastases are more of a problem. Patients with advanced breast and prostate cancers usually develop bone metastases and tend to harbour the bulk of their tumor burden in their bones at the time of death. The concepts and data reviewed in this chapter relate mainly to these malignancies although some are also relevant to bone metastases secondary to multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Percival RC, Urwin GH, Harris S, Yates AJ, Williams JL, Beneton M, Kanis JA. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol, 13: 41 - 49, 1987.

    PubMed  CAS  Google Scholar 

  2. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest, 98: 1544 - 1549, 1996.

    PubMed  CAS  Google Scholar 

  3. Moseley JM, Kubota M, Diefenbach-Jagger H, Wettenhall RE, Kemp BE, Suva LJ, Rodda CP, Ebeling PR, Hudson PJ, Zajac JD, et al. Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci USA, 84: 5048 - 5052, 1987.

    PubMed  CAS  Google Scholar 

  4. Yates AJ, Gutierrez GE, Smolens P, Travis PS, Katz MS, Aufdemorte TB, Boyce BF, Hymer TK, Poser JW, Mundy GR. Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption, and bone metabolism in vivo and in vitro in rodents. J Clin Invest, 81: 932 - 938, 1988.

    PubMed  CAS  Google Scholar 

  5. Southby J, Kissin MW, Danks JA., Hayman JA, Moseley JM, Henderson MA, Bennett RC, Martin TJ. Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Res, 50: 7710 - 7716, 1990.

    PubMed  CAS  Google Scholar 

  6. Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman J., Henderson MA, Bennett RC, Martin TJ. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res, 51: 3059 - 3061, 1991.

    PubMed  CAS  Google Scholar 

  7. Iddon J, Byrne G, Bundred NJ. Bone metastasis in breast cancer: the role of parathyroid hormone related protein. Surg Oncol, 8: 13 - 25, 1999.

    PubMed  CAS  Google Scholar 

  8. Bundred NJ, Walker RA, Ratcliffe WA, Warwick J, Morrison JM, Ratcliffe JG. Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur J Cancer, 28: 690 - 692, 1992.

    PubMed  CAS  Google Scholar 

  9. Clair T, Miller WR, Cho-Chung YS. Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res, 47: 5290 - 5293, 1987.

    PubMed  CAS  Google Scholar 

  10. Aklilu F, Park M, Goltzman D, Rabbani SA. Induction of parathyroid hormone-related peptide by the Ras oncogene: role of Ras farnesylation inhibitors as potential therapeutic agents for hypercalcemia of malignancy. Cancer Res, 57: 4517 - 4522, 1997.

    PubMed  CAS  Google Scholar 

  11. Kiriyama T, Gillespie MT, Glatz JA, Fukumoto S, Moseley JM, Martin TJ. Transforming growth factor beta stimulation of parathyroid hormone-related protein (PTHrP): a paracrine regulator? Mol Cell Endocrinol, 92: 55 - 62, 1993.

    PubMed  CAS  Google Scholar 

  12. Merryman JI, DeWille JW, Werkmeister JR, Capen CC, Rosol TJ. Effects of transforming growth factor-beta on parathyroid hormone-related protein production and ribonucleic acid expression by a squamous carcinoma cell line in vitro. Endocrinol, 134: 2424 - 2430, 1994.

    CAS  Google Scholar 

  13. Cohen MM Jr. TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet, 116A: 1 - 10, 2003.

    Google Scholar 

  14. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev, 14: 627 - 644, 2000.

    PubMed  CAS  Google Scholar 

  15. Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem, 277: 24571 - 24578, 2002.

    PubMed  CAS  Google Scholar 

  16. Flanagan L, Packman K, Juba B, O Neill S, Tenniswood M, Welsh J. Efficacy of Vitamin D compounds to modulate estrogen receptor negative breast cancer growth and invasion. J Steroid Biochem Mol Biol, 84: 181 - 192, 2003.

    PubMed  CAS  Google Scholar 

  17. Krishnan AV, Peehl DM, Feldman D. Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression. J Cell Biochem, 88: 363 - 371, 2003.

    PubMed  CAS  Google Scholar 

  18. van den Bemd GJ, Pols HA, van Leeuwen JP. Anti-tumor effects of 1,25- dihydroxyvitamin D3 and vitamin D analogs. Curr Pharm Des, 6: 717 - 732, 2000.

    PubMed  Google Scholar 

  19. Brown AJ. Therapeutic uses of vitamin D analogues. Am J Kidney Dis, 38: S3 - S19, 2001.

    PubMed  CAS  Google Scholar 

  20. Tovar Sepulveda VA, Falzon M. Regulation of PTH-related protein gene expression by vitamin D in PC-3 prostate cancer cells. Mol Cell Endocrinol, 190: 115 - 124, 2002.

    Google Scholar 

  21. Hoey RP, Sanderson C, Iddon J, Brady G, Bundred NJ, Anderson NG. The parathyroid hormone-related protein receptor is expressed in breast cancer bone metastases and promotes autocrine proliferation in breast carcinoma cells. Br J Cancer, 88: 567 - 573, 2003.

    PubMed  CAS  Google Scholar 

  22. Bryden AA, Hoyland JA, Freemont AJ, Clarke NW, George NJ. Parathyroid hormone related peptide and receptor expression in paired primary prostate cancer and bone metastases. Br J Cancer, 86: 322 - 325, 2002.

    PubMed  CAS  Google Scholar 

  23. Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer, 92: 460 - 470, 2001.

    PubMed  CAS  Google Scholar 

  24. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA, 95: 3597 - 3602, 1998.

    PubMed  CAS  Google Scholar 

  25. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93: 165 - 176, 1998.

    PubMed  CAS  Google Scholar 

  26. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 20: 345 - 357, 1999.

    PubMed  CAS  Google Scholar 

  27. Chambers TJ. Regulation of the differentiation and function of osteoclasts. J Pathol, 192: 4 - 13, 2000.

    PubMed  CAS  Google Scholar 

  28. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveirados-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397: 315 - 323, 1999.

    PubMed  CAS  Google Scholar 

  29. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 89: 309 - 319, 1997.

    PubMed  CAS  Google Scholar 

  30. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem, 273: 14363 - 14367, 1998.

    PubMed  CAS  Google Scholar 

  31. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Min Res, 15: 2 - 12, 2000.

    CAS  Google Scholar 

  32. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinol, 139: 1329 - 1337, 1998.

    Google Scholar 

  33. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res, 61: 4432 - 4436, 2001.

    PubMed  CAS  Google Scholar 

  34. Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A, Brabbs AC, van Beek EJ, Holen I, Skerry TM, Dunstan CR, Russell GR, van Camp B, Vanderkerken K. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood, 98: 3534 - 3540, 2001.

    PubMed  CAS  Google Scholar 

  35. Vanderkerken K, De Leenheer E, Shipman C, Asosingh K, Willems A, van Camp B, Croucher P. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res, 63: 287 - 289, 2003.

    PubMed  CAS  Google Scholar 

  36. Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, Harousseau JL, Lipton A, Mariette X, Williams CD, Nakanishi A, Holloway D, Martin SW, Dunstan CR, Bekker PJ. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer, 97: 887 - 892, 2003.

    PubMed  Google Scholar 

  37. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest, 107: 1235 - 1244, 2001.

    PubMed  CAS  Google Scholar 

  38. Yonou H, Kanomata N, Goya M, Kamijo T, Yokose T, Hasebe T, Nagai K, Hatano T, Ogawa Y, Ochiai A. Osteoprotegerin/Osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Res, 63: 2096 - 2102, 2003.

    PubMed  CAS  Google Scholar 

  39. Sordillo EM, Pearse RN. RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer, 97: 802 - 812, 2003.

    PubMed  Google Scholar 

  40. Gazitt Y. TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia, 13: 1817 - 1824, 1999.

    PubMed  CAS  Google Scholar 

  41. Oyajobi BO, Anderson DM, Traianedes K, Williams PJ, Yoneda T, Mundy GR. Therapeutic efficacy of a soluble receptor activator of nuclear factor kappaB-IgG Fc fusion protein in suppressing bone resorption and hypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Res, 61: 2572 - 2578, 2001.

    PubMed  CAS  Google Scholar 

  42. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev, 27: 165 - 176, 2001.

    PubMed  CAS  Google Scholar 

  43. Neville-Webbe HL, Holen I, Coleman RE. The anti-tumor activity of bisphosphonates. Cancer Treat Rev, 28: 305 - 319, 2002.

    PubMed  CAS  Google Scholar 

  44. Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev, 22: 205 - 222, 2003.

    PubMed  CAS  Google Scholar 

  45. Hart CA, Scott LJ, Bagley S, Bryden AA, Clarke NW, Lang SH. Role of proteolytic enzymes in human prostate bone metastasis formation: in vivo and in vitro studies. Br J Cancer, 86: 1136 - 1142, 2002.

    PubMed  CAS  Google Scholar 

  46. Fisher JL, Field CL, Zhou H, Harris TL, Henderson MA, Choong PF. Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases-a comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res Treat, 61: 1 - 12, 2000.

    PubMed  CAS  Google Scholar 

  47. Littlewood-Evans AJ, Bilbe G, Bowler WB, Farley D, Wlodarski B, Kokubo T, Inaoka T, Sloane J, Evans DB, Gallagher JA. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res, 57: 5386 - 5390, 1997.

    PubMed  CAS  Google Scholar 

  48. Ishikawa T, Kamiyama M, Tani-Ishii N, Suzuki H, Ichikawa Y, Hamaguchi Y, Momiyama N, Shimada H. Inhibition of osteoclast differentiation and bone resorption by cathepsin K antisense oligonucleotides. Mol Carcinog, 32: 84 - 91, 2001.

    PubMed  CAS  Google Scholar 

  49. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol, 13: 534 - 540, 2001.

    PubMed  CAS  Google Scholar 

  50. Everts V, Delaisse JM, Korper W, Beertsen W. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. J Bone Min Res, 13: 1420 - 1430, 1998.

    CAS  Google Scholar 

  51. Lhotak S, Elavathil LJ, Vukmirovic-Popovic S, Duivenvoorden WC, Tozer RG, Singh G. Immunolocalization of matrix metalloproteinases and their inhibitors in clinical specimens of bone metastasis from breast carcinoma. Clin Exp Metastasis, 18: 463 - 470, 2000.

    PubMed  CAS  Google Scholar 

  52. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295: 2387 - 2392, 2002.

    PubMed  CAS  Google Scholar 

  53. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer, 2: 657 - 672, 2002.

    PubMed  CAS  Google Scholar 

  54. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene, 283: 49 - 62, 2002.

    PubMed  CAS  Google Scholar 

  55. Blobel CP. Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm Res, 51: 83 - 84, 2002.

    PubMed  CAS  Google Scholar 

  56. Sanchez-Sweatman OH, Orr FW, Singh G. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis, 18: 297 - 305, 1998.

    PubMed  CAS  Google Scholar 

  57. Nemeth JA, Yousif R, Herzog M, Che M, Upadhyay J, Shekarriz B, Bhagat S, Mullins C, Fridman R, Cher ML. Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst, 94: 17 - 25, 2002.

    PubMed  CAS  Google Scholar 

  58. Falardeau P, Champagne P, Poyet P, Hariton C, Dupont E. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol, 28: 620 - 625, 2001.

    PubMed  CAS  Google Scholar 

  59. Winding B, NicAmhlaoibh R, Misander H, Hoegh-Andersen P, Andersen TL, Holst-Hansen C, Heegaard AM, Foged NT, Brunner N, Delaisse JM. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice. Clin Cancer Res, 8: 1932 - 1939, 2002.

    PubMed  CAS  Google Scholar 

  60. Golub LM, Lee HM, Lehrer G, Nemiroff A, McNamara TF, Kaplan R, Ramamurthy NS. Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J Periodontal Res, 18: 516 - 526, 1983.

    PubMed  CAS  Google Scholar 

  61. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res, 12: 12 - 26, 1998.

    PubMed  CAS  Google Scholar 

  62. Smith GN Jr, Brandt KD, Hasty KA. Activation of recombinant human neutrophil procollagenase in the presence of doxycycline results in fragmentation of the enzyme and loss of enzyme activity. Arthritis Rheum, 39: 235 - 244, 1996.

    PubMed  CAS  Google Scholar 

  63. Golub LM, Ramamurthy NS, Llavaneras A, Ryan ME, Lee HM, Liu Y, Bain S, Sorsa, T. A chemically modified nonantimicrobial tetracycline (CMT-8) inhibits gingival matrix metalloproteinases, periodontal breakdown, and extra-oral bone loss in ovariectomized rats. Ann NY Acad Sci, 878: 290 - 310, 1999.

    PubMed  CAS  Google Scholar 

  64. Bettany JT, Peet NM, Wolowacz RG, Skerry TM, Grabowski PS. Tetracyclines induce apoptosis in osteoclasts. Bone, 27: 75 - 80, 2000.

    PubMed  CAS  Google Scholar 

  65. Duivenvoorden WC, Hirte HW, Singh G. Use of tetracycline as an inhibitor of matrix metalloproteinase activity secreted by human bone-metastasizing cancer cells. Invasion Metastasis, 17: 312 - 322, 1997.

    PubMed  CAS  Google Scholar 

  66. Fife RS, Sledge GW Jr, Roth BJ, Proctor C. Effects of doxycycline on human prostate cancer cells in vitro. Cancer Lett, 127: 37 - 41, 1998.

    PubMed  CAS  Google Scholar 

  67. Fife RS, Sledge GW Jr. Effects of doxycycline on in vitro growth, migration, and gelatinase activity of breast carcinoma cells. J Lab Clin Med, 125: 407 - 411, 1995.

    PubMed  CAS  Google Scholar 

  68. Fife RS, Sledge GW Jr, Sissons S, Zerler B. Effects of tetracyclines on angiogenesis in vitro. Cancer Lett, 153: 75 - 78, 2000.

    PubMed  CAS  Google Scholar 

  69. Duivenvoorden, WC, Popovic SV, Lhotak S, Seidlitz E, Hirte HW, Tozer RG, Singh G. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res, 62: 1588 - 1591, 2002.

    PubMed  CAS  Google Scholar 

  70. Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nat Rev Cancer, 3: 110 - 116, 2003.

    PubMed  CAS  Google Scholar 

  71. Stern P H, Tatrai A, Semler DE, Lee SK, Lakatos P, Strieleman PJ, Tarjan G, Sanders JL. Endothelin receptors, second messengers, and actions in bone. J Nutr, 125: 2028S - 2032S, 1995.

    PubMed  CAS  Google Scholar 

  72. Takuwa Y, Masaki T, Yamashita K. The effects of the endothelin family peptides on cultured osteoblastic cells from rat calvariae. Biochem Biophys Res Commun, 170: 998 - 1005, 1990.

    PubMed  CAS  Google Scholar 

  73. Sasaki T, Hong MH. Endothelin-1 localization in bone cells and vascular endothelial cells in rat bone marrow. Anat Rec, 237: 332 - 337, 1993.

    PubMed  CAS  Google Scholar 

  74. Zaidi M, Alam AS, Bax BE, Shankar VS, Bax CM, Gill JS, Pazianas M, Huang CL, Sahinoglu T, Moonga BS, et al. Role of the endothelial cell in osteoclast control: new perspectives. Bone, 14: 97 - 102, 1993.

    PubMed  CAS  Google Scholar 

  75. Tatrai A, Foster S, Lakatos P, Shankar G, Stern PH. Endothelin-1 actions on resorption, collagen and noncollagen protein synthesis, and phosphatidylinositol turnover in bone organ cultures. Endocrinol, 131: 603 - 607, 1992.

    CAS  Google Scholar 

  76. Kasperk CH, Borcsok I, Schairer HU, Schneider U, Nawroth PP, Niethard FU, Ziegler R. Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int, 60: 368 - 374, 1997.

    PubMed  CAS  Google Scholar 

  77. Takuwa Y, Ohue Y, Takuwa N, Yamashita K. Endothelin-1 activates phospholipase C and mobilizes Ca2+ from extra-and intracellular pools in osteoblastic cells. Am J Physiol, 257: E797 - E803, 1989.

    PubMed  CAS  Google Scholar 

  78. Hiruma Y, Inoue A, Shiohama A, Otsuka E, Hirose S, Yamaguchi A, Hagiwara H. Endothelins inhibit the mineralization of osteoblastic MC3T3-E1 cells through the A-type endothelin receptor. Am J Physiol, 275: R1099 - R1105, 1998.

    PubMed  CAS  Google Scholar 

  79. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science, 286: 1946 - 1949, 1999.

    PubMed  CAS  Google Scholar 

  80. Guise TA, Yin JJ, Mohammad KS. Role of endothelin-1 in osteoblastic bone metastases. Cancer, 97: 779 - 784, 2003.

    PubMed  Google Scholar 

  81. Carducci MA, Padley RJ, Breul J, Vogelzang NJ, Zonnenberg BA, Daliani DD, Schulman CC, Nabulsi AA, Humerickhouse RA, Weinberg MA, Schmitt JL, Nelson JB. Effect of endothelin-A receptor blockade with atrasentan on tumor progression in men with hormone-refractory prostate cancer: a randomized, phase II, placebo-controlled trial. J Clin Oncol, 21: 679 - 689, 2003.

    PubMed  CAS  Google Scholar 

  82. Liotta LA. An attractive force in metastasis. Nature, 410: 24 - 25, 2001.

    PubMed  CAS  Google Scholar 

  83. Baggiolini M. Chemokines and leukocyte traffic. Nature, 392: 565 - 568, 1998.

    PubMed  CAS  Google Scholar 

  84. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME. Involvement of chemokine receptors in breast cancer metastasis. Nature, 410: 50 - 56, 2001.

    PubMed  CAS  Google Scholar 

  85. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor- 1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 62: 1832 - 1837, 2002.

    PubMed  CAS  Google Scholar 

  86. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 89: 462 - 473, 2003.

    PubMed  CAS  Google Scholar 

  87. Strieter RM. Chemokines: not just leukocyte chemoattractants in the promotion of cancer. Nat Immunol, 2: 285 - 286, 2001.

    PubMed  CAS  Google Scholar 

  88. Proudfoot AE, Power CA, Wells TN. The strategy of blocking the chemokine system to combat disease. Immunol Rev, 177: 246 - 56, 2000.

    PubMed  CAS  Google Scholar 

  89. Rajarathnam K. Designing decoys for chemokine-chemokine receptor interaction. Curr Pharm Des, 8: 2159 - 2169, 2002.

    PubMed  CAS  Google Scholar 

  90. Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, Grubbs B, Zhao M, Chen D, Sherry B, Mundy GR. Dual effects of macrophage inflammatory protein-1 {alpha} on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood, 102: 311 - 319, 2003.

    PubMed  CAS  Google Scholar 

  91. Kukita T, Nomiyama H, Ohmoto Y, Kukita A, Shuto T, Hotokebuchi T, Sugioka Y, Miura R, Iijima T. Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab Invest, 76: 399 - 406, 1997.

    PubMed  CAS  Google Scholar 

  92. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood, 97: 3349 - 3353, 2001.

    PubMed  CAS  Google Scholar 

  93. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, Alsina M. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood, 96: 671 - 675, 2000.

    PubMed  CAS  Google Scholar 

  94. Menten P, Wuyts A, van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev, 13: 455 - 481, 2002.

    PubMed  CAS  Google Scholar 

  95. De Vos J, Couderc G, Tarte K, Jourdan M, Requirand G, Delteil MC, Rossi JF, Mechti N, Klein B. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood, 98: 771 - 780, 2001.

    PubMed  Google Scholar 

  96. Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G. Expression and function of chemokine receptors in human multiple myeloma. Leukemia, 17: 203 - 210, 2003.

    PubMed  CAS  Google Scholar 

  97. Broek IV, Asosingh K, Vanderkerken K, Straetmans N, van Camp B, van Riet I. Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer, 88: 855 - 862, 2003.

    Google Scholar 

  98. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O. Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol, 170: 1136 - 1140, 2003.

    PubMed  CAS  Google Scholar 

  99. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev, 79: 1283 - 1316, 1999.

    PubMed  CAS  Google Scholar 

  100. Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res, 62: 917 - 923, 2002.

    PubMed  CAS  Google Scholar 

  101. Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R, Killion JJ, Logothetis C, Mathew P, Fidler IJ. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst, 95: 458 - 470, 2003.

    PubMed  CAS  Google Scholar 

  102. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 344: 1031 - 1037, 2001.

    Google Scholar 

  103. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther, 295: 139 - 145, 2000.

    PubMed  CAS  Google Scholar 

  104. Weber GF. The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta, 1552: 61 - 85, 2001.

    PubMed  CAS  Google Scholar 

  105. Yeatman TJ, Chambers AF. Osteopontin and colon cancer progression. Clin Exp Metastasis, 20: 85 - 90, 2003.

    PubMed  CAS  Google Scholar 

  106. Furger KA, Menon RK, Tuckl AB, Bramwelll VH, Chambers AF. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med, 1: 621 - 632, 2001.

    PubMed  CAS  Google Scholar 

  107. Hotte SJ, Winquist EW, Stitt L, Wilson SM, Chambers AF. Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer, 95: 506 - 512, 2002.

    PubMed  CAS  Google Scholar 

  108. Nemoto H, Rittling SR, Yoshitake H, Furuya K, Amagasa T, Tsuji K, Nifuji A, Denhardt DT, Noda M. Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Min Res, 16: 652 - 659, 2001.

    CAS  Google Scholar 

  109. Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, Margue C, Cohen-Solal M, Buffet A, Kieffer N, Clezardin P. Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J, 16: 1266 - 1268, 2002.

    PubMed  CAS  Google Scholar 

  110. Liapis H, Flath A, Kitazawa S. Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol, 5: 127 - 135, 1996.

    PubMed  CAS  Google Scholar 

  111. Ducy P, Karsenty G. The family of bone morphogenetic proteins. Kidney Int, 57: 2207 - 2214, 2000.

    PubMed  CAS  Google Scholar 

  112. Khan SN, Sandhu HS, Lane JM, Cammisa FP Jr, Girardi FP. Bone morphogenetic proteins: relevance in spine surgery. Orthop Clin North Am, 33: 447-463, ix, 2002.

    Google Scholar 

  113. Masuda H, Fukabori Y, Nakano K, Takezawa Y, CSuzuki T, Yamanaka H. Increased expression of bone morphogenetic protein-7 in bone metastatic prostate cancer. Prostate, 54: 268 - 274, 2003.

    PubMed  CAS  Google Scholar 

  114. Thomas BG, Hamdy FC. Bone morphogenetic protein-6: potential mediator of osteoblastic metastases in prostate cancer. Prostate Cancer Prostatic Dis, 3: 283 - 285, 2000.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, S., Singh, G. (2004). Potential Therapeutic Targets for Bone Metastasis. In: Singh, G., Orr, W. (eds) Bone Metastasis and Molecular Mechanisms. Cancer Metastasis — Biology and Treatment, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2036-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2036-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6563-6

  • Online ISBN: 978-1-4020-2036-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics