Skip to main content

Models of Breast Cancer Metastasis to Bone: Characterization of a Clinically Relevant Model

  • Chapter
Bone Metastasis and Molecular Mechanisms

Abstract

Breast cancer metastasis to the skeleton is a severe clinical problem that occurs in 70% of patients with advanced disease. Bone is also a frequent site of metastasis of some other cancers, including prostate. Bone metastases in breast cancer are predominantly osteolytic due to the resorption of bone following excessive activation of osteoclasts. This leads to major clinical problems including severe pain, hypercalcemia, bone fractures and nerve-compression syndromes (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer, 55: 61–66, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmuller G. Genetic heterogeneity of single disseminated tumor cells in minimal residual cancer. Lancet, 360: 683–689, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science, 296: 1046–1049, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2: 563–572, 2002.

    Article  PubMed  CAS  Google Scholar 

  5. Liotta LA. An attractive force in metastasis. Nature, 410: 24–25, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 410: 50–56, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Sloan EK, Anderson RL. Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci, 59: 1491–1502, 2002.

    Article  PubMed  CAS  Google Scholar 

  8. Parker B, Sukumar S. Distant metastasis in breast cancer: molecular mechanisms and therapeutic targets. Cancer Biol Ther, 2: 14–21, 2003.

    PubMed  Google Scholar 

  9. Chambers AF, MacDonald IC, Schmidt EE, Koop S, Morris VL, Khokha R, Groom, A. C. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev, 14: 279–301, 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom, AC. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol, 153: 865–873, 1998.

    Article  PubMed  CAS  Google Scholar 

  11. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2: 584–593, 2002.

    Article  PubMed  CAS  Google Scholar 

  12. Fedarko NS, Fohr B, Robey PG, Young MF, Fishe LW. Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack. J Biol Chem, 275: 16666–16672, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. Chelouche Lev D, Price JE. Therapeutic intervention with breast cancer metastasis. Crit Rev Eukaryot Gene Expr, 12: 137–150, 2002.

    Article  Google Scholar 

  14. Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T. Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer, 88: 2979–2988, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Body JJ. Effectiveness and cost of bisphosphonate therapy in tumor bone disease. Cancer, 97: 859–865, 2003.

    Article  PubMed  Google Scholar 

  16. Kanis JA. Rationale for the use of bisphosphonates in breast cancer. Acta Oncol, 35 Suppl 5: 61–67, 1996.

    Article  Google Scholar 

  17. Body JJ, Bartl R, Burckhardt P, Delmas PD, Diel IJ, Fleisch H, Kanis JA, Kyle RA, Mundy GR, Paterson AH, Rubens RD. Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol, 16: 3890–3899, 1998.

    PubMed  CAS  Google Scholar 

  18. Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med, 339: 357–363, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res, 61: 4432–4436, 2001.

    PubMed  CAS  Google Scholar 

  20. Kostenuik, PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des, 7: 613–635, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Reddi AH, Roodman D, Freeman C, Mohla S. Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res, 18: 190–194, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer, 6: 333–347, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Chirgwin JM, Guise TA. Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr, 10: 159–178, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Lacroix M, Siwek B, Marie PJ, Body JJ. Production and regulation of interleukin-11 by breast cancer cells. Cancer Lett, 127: 29–35, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Gillespie MT, Thomas RJ, Pu ZY, Zhou H, Martin TJ, Findlay DM. Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers. Int J Cancer, 73: 812–815, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson RA, Boyce BF, Mundy GR, Roodman GD. Tumors producing human tumor necrosis factor induced hypercalcemia and osteoclastic bone resorption in nude mice. Endocrinology, 124: 1424–1427, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubb, BG, Wieser R, Massague J, Mundy GR, Guise TA. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest, 103: 197–206, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Tumber A, Morgan HM, Meikle MC, Hill PA. Human breast-cancer cells stimulate the fusion, migration and resorptive activity of osteoclasts in bone explants. Int J Cancer, 91: 665–672, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Mancino AT, Klimberg VS, Yamamoto M, Manolagas SC, Abe E. Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. J Surg Res, 100: 18–24, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Ishida A, Fujita N, Kitazawa R, Tsuruo,T. Transforming growth factor-beta induces expression of receptor activator of NF-kappa B ligand in vascular endothelial cells derived from bone. J Biol Chem, 277: 26217–26224, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res, 62: 917–923, 2002.

    PubMed  CAS  Google Scholar 

  32. Rabbani SA, Xing RH. Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies. Int J Oncol, 12: 911–920, 1998.

    PubMed  CAS  Google Scholar 

  33. Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, Margue C, Cohen-Solal M, Buffet A, Kieffe, N, Clezardin P. Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J, 16: 1266–1268, 2002.

    PubMed  CAS  Google Scholar 

  34. Maass N, Hojo T, Rosel F, Ikeda T, Jonat W, Nagasaki K. Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clin Biochem, 34: 303–307, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Lhotak S, Elavathil LJ, Vukmirovic-Popovic S, Duivenvoorden WC, Tozer RG, Singh G. Immunolocalization of matrix metalloproteinases and their inhibitors in clinical specimens of bone metastasis from breast carcinoma. Clin Exp Metastasis, 18: 463–470, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A, Mueller BM. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA, 98: 1853–1858, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, O’Keefe PF, Ramnaraine ML, Clohisy DR, Mantyh PW. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med, 6: 521–528, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Shayakhmetov DM, Li ZY, Ni S, Lieber A. Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res, 62: 1063–1068, 2002.

    PubMed  CAS  Google Scholar 

  39. Peyruchaud O, Winding B, Pecheur I, Serre CM, Delmas P, Clezardin P. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J Bone Miner Res, 16: 2027–2034, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res, 48: 6876–6881, 1988.

    PubMed  CAS  Google Scholar 

  41. Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat, 39: 93–102, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Teste AM, Sharp JA, Dhanesuan N, Waltham M, Thompson EW. Correlation between extent of osteolytic damage and metastatic burden of human breast cancer metastasis in nude mice: real-time PCR quantitation. Clin Exp Metastasis, 19: 377–383, 2002.

    Article  Google Scholar 

  43. Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura RA bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res, 16: 1486–1495, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia, 7: 177–189, 2002.

    Article  PubMed  Google Scholar 

  45. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, Alsina M. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood, 96: 671–675, 2000.

    PubMed  CAS  Google Scholar 

  46. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D, Matsumoto T. Role for macrophage inflammatory protein (MIP)- 1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood, 100: 2195–2202, 2002.

    PubMed  CAS  Google Scholar 

  47. Warren HS, Smyth MJ. NK cells and apoptosis. Immunol Cell Biol, 77: 64–75, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol, 2: 293–299, 2001.

    Article  PubMed  CAS  Google Scholar 

  49. Zia A, Schildberg FW, Funke I. MHC class I negative phenotype of disseminated tumor cells in bone marrow is associated with poor survival in R0M0 breast cancer patients. Int J Cancer, 93: 566–570, 2001.

    Article  PubMed  CAS  Google Scholar 

  50. Rees RC, Mian S. Selective MHC expression in tumors modulates adaptive and innate antitumor responses. Cancer Immunol Immunother, 48: 374–381, 1999.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang GJ, Adachi I. Serum levels of soluble intercellular adhesion molecule-1 and Eselectin in metastatic breast carcinoma: correlations with clinicopathological features and prognosis. Int J Oncol, 14: 71–77, 1999.

    PubMed  Google Scholar 

  52. Cefai D, Favre L, Wattendorf E, Marti A, Jaggi R, Gimmi CD. Role of Fas ligand expression in promoting escape from immune rejection in a spontaneous tumor model. Int J Cancer, 91: 529–537, 2001.

    Article  PubMed  CAS  Google Scholar 

  53. Muschen M, Moers C, Warskulat U, Even J, Niederacher D, Beckmann MW. CD95 ligand expression as a mechanism of immune escape in breast cancer. Immunology, 99: 69–77, 2000.

    Article  PubMed  CAS  Google Scholar 

  54. Maroulakou IG, Anve M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci U S A, 91: 11236–11240, 1994.

    Article  PubMed  CAS  Google Scholar 

  55. Hennighausen L. Mouse models for breast cancer. Breast Cancer Res, 2: 2–7, 2000.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang M, Shi Y, Magit D, Furth PA, Sager R. Reduced mammary tumor progression in WAP-TAg/WAP-maspin bitransgenic mice. Oncogene, 19: 6053–6058, 2000.

    Article  PubMed  CAS  Google Scholar 

  57. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder, P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell, 49: 465–475, 1987.

    Article  PubMed  CAS  Google Scholar 

  58. Michaelson JS, Leder P. beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene, 20: 5093–5099, 2001.

    Article  PubMed  CAS  Google Scholar 

  59. Deng CX. Tumor formation in Brca1 conditional mutant mice. Environ Mol Mutagen, 39: 171–177, 2002.

    Article  PubMed  CAS  Google Scholar 

  60. Guise TA. Parathyroid hormone-related protein and bone metastases. Cancer, 80: 1572–1580, 1997.

    Article  PubMed  CAS  Google Scholar 

  61. Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, DiefenbachJagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY,A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science, 237: 893–896, 1987.

    Article  PubMed  CAS  Google Scholar 

  62. Moseley JM, Kubota M, Diefenbach-Jagger H, Wettenhall RE, Kemp BE, Suva LJ, Rodda CP, Ebeling PR, Hudson PJ, Zajac JD,Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci USA, 84: 5048–5052, 1987.

    Article  PubMed  CAS  Google Scholar 

  63. Rankin W, Grill V, Martin TJ. Parathyroid hormone-related protein and hypercalcemia. Cancer, 80: 1564–1571, 1997.

    Article  PubMed  CAS  Google Scholar 

  64. Guise TA, Yin JJ, Thomas RJ, Dallas M, Cui Y, Gillespie MT. Parathyroid hormone-related protein (PTHrP)-(1–139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone, 30: 670–676, 2002.

    Article  PubMed  CAS  Google Scholar 

  65. Bundred NJ, Ratcliffe WA, Walker RA. Coley S, Morrison JM, Ratcliffe JG. Parathyroid hormone related protein and hypercalcaemia in breast cancer. BMJ, 303: 1506–1509, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. Kohno N, Kitazawa S, Sakoda Y, Kanbara Y, Furuya Y, Ohash, O, Kitazawa R. Parathyroid Hormone-related Protein in Breast Cancer Tissues: Relationship between Primary and Metastatic Sites. Breast Cancer, 1: 43–49, 1994.

    Google Scholar 

  67. Yoshida A, Nakamura Y, Shimizu A, Harada M, Kameda Y, Nagano A, Inaba M, Asaga T. Significance of the parathyroid hormone-related protein expression in breast carcinoma. Breast Cancer, 7: 215–220, 2000.

    Article  PubMed  CAS  Google Scholar 

  68. Henderson M, Danks J, Moseley J, Slavin J, Harris T, McKinlay M, Hopper J, Martin T. Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases. J Natl Cancer Inst, 93: 234–237, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Wysolmerski JJ, Dann PR, Zelazny E., Dunbar ME, Insogna KL, Guise TA, Perkins AS. Overexpression of parathyroid hormone-related protein causes hypercalcemia but not bone metastases in a murine model of mammary tumorigenesis. J Bone Miner Res, 17: 1164–1170, 2002.

    Article  PubMed  CAS  Google Scholar 

  70. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis, 17: 163–170, 1999.

    Article  PubMed  CAS  Google Scholar 

  71. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res, 52: 1399–1405, 1992.

    PubMed  CAS  Google Scholar 

  72. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res, 38: 3174–3181, 1978.

    PubMed  CAS  Google Scholar 

  73. Li X, Wang J, An Z, Yang M, Baranov E, Jiang P, Sun F, Moossa AR, Hoffman RM. Optically imageable metastatic model of human breast cancer. Clin Exp Metastasis, 19: 347–350, 2002.

    Article  PubMed  CAS  Google Scholar 

  74. Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16: 1391–1397, 1998.

    Article  PubMed  CAS  Google Scholar 

  75. Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Muller U, Reichardt LF. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J Cell Biol, 154: 447–458, 2001.

    Article  PubMed  CAS  Google Scholar 

  76. Liotta LA, Kohn EC. The microenvironment of the tumor-host interface. Nature, 411: 375–379, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parker, B.S., Eckhardt, B.L., Anderson, R.L. (2004). Models of Breast Cancer Metastasis to Bone: Characterization of a Clinically Relevant Model. In: Singh, G., Orr, W. (eds) Bone Metastasis and Molecular Mechanisms. Cancer Metastasis — Biology and Treatment, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2036-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2036-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6563-6

  • Online ISBN: 978-1-4020-2036-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics