Mathematical Knowledge

  • Roman Murawski

Abstract

Since its very beginnings mathematics played a special and distinguished role in the human knowledge. It was close to the ideal of a scientific theory, even more, it established such an ideal and served as a pattern of a theory. It has played an important role also in the development of the epistemology. In fact mathematics has been through ages a pattern of any rational knowledge and the paradigm of a priori knowledge. Hence the importance and meaning of philosophical and methodological reflections on mathematics as a science. Such reflections have accompanied mathematics since ancient Greece.

Keywords

Topo Defend Clarification Rene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A. Anthologies of texts

  1. Benacerraf, P. and H. Putnam (eds.): 1964, Philosophy of Mathematics. Selected Readings, Prentice-Hall, Inc., Englewood Cliffs, New Jersey ( 2nd edition: Cambridge University Press, Cambridge 1983 ).Google Scholar
  2. Hart, W. D. (ed.): 1996, The Philosophy of Mathematics, Oxford University Press, Oxford.Google Scholar
  3. Hintikka, J. (ed.): 1969, The Philosophy of Matematics, Oxford University Press, Oxford.Google Scholar
  4. Murawski, R. (ed.): 1986, Philosophy of Mathematics. Anthology of Classical Texts (in Polish), Wydawnictwo Naukowe UAM, Poznan (second revised edition: 1994 ).Google Scholar
  5. Resnik, M.D. (ed.): 1995, Mathematical Objects and Mathematical Knowledge, Dartmouth, Aldershot-Brookfield, USA, Singapore, Sydney.Google Scholar
  6. Thiel, Ch. (ed.): 1982, Erkenntnistheoretische Grundlagen der Mathematik, Gerstenbeg Verlag, Hildesheim.Google Scholar
  7. Tymoczko, T. (ed.): 1985, New Directions in the Philosophy of Mathematics, Birkhäuser, Boston, Basel, Stuttgart.Google Scholar

B. Original papers

  1. Aristotle: 1960, Aristotelis opera ex recension Immanuelis Bekkeri edidit Academia Regia Borussica. Editio altera, Hrsg. O. Gigon, Walter de Gruyter, Berlin.Google Scholar
  2. Brouwer, L. E. J.: 1907, Over de Grondslagen der Wiskunde, Maas en van Suchtelen, Amsterdam.Google Scholar
  3. Brouwer, L. E. J.: 1912, Intuitionisme en formalisme, Noordhoff, Groningen; also in Wiskundig Tijdschrift 9 (1912), 180–211; English translation. J.: 1912, `Intuitionism and Formalism’, Bulletin of the American Mathematical Society 20 (1913), 81–96.CrossRefGoogle Scholar
  4. Brouwer, L. E. J.: 1948, `Consciousness, Philosophy and Mathematics’, in E. W. Beth, H. J. Pos, and H. J. A. Hollak (eds.), Library of the Tenth International Congress in Philosophy, vol. 1, North-Holland Publ. Comp., Amsterdam, pp. 1235–1249.Google Scholar
  5. Chaitin, G.: 1974, Information-Theoretic Computational Complexity’, IEEE Transactions on Information Theory IT-20, 10–15.Google Scholar
  6. Chaitin, G.: 1982, `Gödel’s Theorem and Information’, International Journal of Theoretical Physics 21, 941–954.CrossRefGoogle Scholar
  7. Chihara, Ch. S.: 1990, Constructibility and Mathematical Existence, Clarendon Press, Oxford.Google Scholar
  8. Couturat, L.: 1901, La logique de Leibniz d’apres des documents inédits, Alcan, Paris.Google Scholar
  9. Curry, H. B.: 1951, Outlines of a Formalist Philosophy of Mathematics, North-Holland Publ. Comp., Amsterdam.Google Scholar
  10. Dedekind, R.: 1872, Stetigkeit und irrationale Zahlen, Friedrich Vieweg und Sohn, Braunschweig.Google Scholar
  11. Descartes, R.: 1637, Discours de la methode. Pour bien conduire sa raison, und chercher la verité dans les sciences. Plus la Dioptrique. Les Meteores. Et la Geometrie. Qui sont des essais de tete Methode, Ian Marie, Leyden.Google Scholar
  12. Euclid: 1883–1886, Euclidis Elementa,vol. I-IV, Edidit I.L. Heibeg, Teubner, Lipsiae.Google Scholar
  13. Euclid: 1956, The Thirteen Books of Euclidis Elements, translated from the text of Heiberg, with Introduction and Commentary by Sir Th. L. Heath, Dover Publishers, Inc., New York.Google Scholar
  14. Field, H.: 1980, Science without Numbers, Basil Blackwell, Oxford.Google Scholar
  15. Field, H.: 1989, Realism, Mathematics, and Modality, Basil Blackwell, Oxford.Google Scholar
  16. Frege, G.: 1879, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Louis Nebert, Halle.Google Scholar
  17. Frege, G.: 1884, Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl, Wilhelm Koeber, Breslau.Google Scholar
  18. Frege, G.: 1893, Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, Bd. 1, Hermann Pohle, Jena.Google Scholar
  19. Frege, G.: 1903, Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, Bd. 2, Hermann Pohle, Jena.Google Scholar
  20. Gödel, K.: 1931, `Über formal unentscheidbare Sätze der ‘Principia Mathematica’ und verwandter Systeme’. l’, Monatshefte für Mathematik und Physik 38, 173–198; reprinted with English translation `On Formally Undecidable Propositions of Principia Mathematica and Related Systems’ in K. Gödel, Collected Works, vol. I, S. Feferman (eds.), Oxford University Press, New York and Clarendon Press, Oxford, 1986, pp. 144–195.Google Scholar
  21. Gödel, K.: 1944, ‘Russel’s Mathematical Logic’, in P. A. Schilpp (ed.), The Philosophy of Bertrand Russell, Northwestern University, Evanston, pp. 123–153; reprinted in K. Gödel, Collected Works, vol. II, S. Feferman (eds.), Oxford University Press, New York and Oxford, 1990, pp. 119–141.Google Scholar
  22. Gödel, K.: 1947, `What is Cantor’s Continuum Problem?’, The American Mathematical Monthly 54, 515–525; second revised version in P. Benacerraf and H. Putnam, Philosophy of Mathematics. Selected Readings, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964, pp. 258–273; reprinted in K. Gödel, Collected Works, vol. II, S. Feferman (eds.), Oxford University Press, New York and Oxford, 1990, pp. 176–187.Google Scholar
  23. Hellman, G.: 1989, Mathematics without Numbers. Towards a Modal-Structural Interpretation, Clarendon Press, Oxford.Google Scholar
  24. Hilbert, D.: 1899, Grundlagen der Geometrie. Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals, B.G. Teubner, Leipzig, pp. 3–92.Google Scholar
  25. Hilbert, D.: 1901, `Mathematische Probleme’, Archiv der Mathematik und Physik 1, 44–63 and 213–237. Reprinted in D. Hilbert, Gesammelte Abhandlungen, Verlag von Julius Springer, Berlin, Bd. 3, pp. 290–329; English translation: `Mathematical Problems’, in F. Browder (ed.), Mathematical Developments Arising from Hilbert’s Problems, Proceedings of the Symposia in Pure Mathematics 28, American Mathematical Society, Providence, RI, 1976, pp. 1–34.Google Scholar
  26. Hilbert, D.: 1926, `Über das Unendliche’, Mathematische Annalen 95, 161–190; English translation: `On the Infinite’, in J. van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967, pp. 367–392.Google Scholar
  27. Kant, 1.: 1781, Critik der reinen Vernunft, Johann Friedrich Hartknoch, Riga.Google Scholar
  28. Kirby, L. and J. Paris: 1982, `Accessible Independence Results for Peano Arithmetic’, Bulletin of London Mathematical Society 14, 285–293.CrossRefGoogle Scholar
  29. Kitcher, Ph.: 1983, The Nature of Mathematical Knowledge, Oxford University Press, New York-Oxford.Google Scholar
  30. Kronecker, L.: 1887, `Über den Zahlbegriff, J. Reine Angewandte Mathematik 101, 157–177.Google Scholar
  31. Lakatos, I.: 1963–64, `Proofs and Refutations. The Logic of Mathematical Discovery’, British Journal for the Philosophy of Science 14; as a book: Cambridge 1976. Lakatos, I.: 1967, `A Renaissance of the Empiricism in the Recent Philosophy of Mathematics?’, in I. Lakatos (ed.), Problems in the Philosophy of Mathematics, North-Holland Publ. Comp., Amsterdam 1967, pp. 199–202; extended version in I. Lakatos, Philosophical Papers, vol. 2: Mathematics, Science and Epistemology, J. Worall and G. Currie (eds.), Cambridge University Press, Cambridge-London-New York-Melbourne, 1978, pp. 24–42.Google Scholar
  32. Leibniz, G. W.: 1875–1890, Philosophische Schriften,Hrsg. C. I Gerhardt, 7 volumes, Weidmannsche Buchhandlung, Berlin.Google Scholar
  33. Maddy, P.: 1980, `Perception and Mathematical Intuition’, Philosophical Review 89, 163–196.CrossRefGoogle Scholar
  34. Maddy, P.: 1990a, Realism in Mathematics, Clarendon Press, Oxford.Google Scholar
  35. Maddy, P.: 1990b, `Physicalistic Platonism’, in A. D. Irvive (ed.), Physicalism in Mathematics, Kluwer Academic Publishers, Dordrecht, pp. 259–289.CrossRefGoogle Scholar
  36. Murawski, R.: 1994, ‘Hilbert’s Program: Incompleteness Theorems vs. Partial Realizations’, in J. Wolenski (ed.), Philosophical Logic in Poland, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 103–127.CrossRefGoogle Scholar
  37. Paris, J. and L. Harrington: 1977, `A Mathematical Incompleteness in Peano Arithmetic’, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland Publ. Comp., Amsterdam, pp. 1133–1142.Google Scholar
  38. Pasch, M.: 1882, Vorlesungen über neuere Geometrie, B.G. Teubner, Leipzig und Berlin.Google Scholar
  39. Poincaré, H.: 1902, La science et l’hypotèse, Flammarion, Paris.Google Scholar
  40. Proclus: 1873, Procli Diadochi in Primum Elementorum Librum Comentarii, ed. G. Friedlein, B.G. Teubner, Leipzig ( reprinted: G. Olms, Hildesheim 1967 ).Google Scholar
  41. Putnam H 1967, `Mathematics Without Foundations’, Journal of Philosophy 64 5–22. Revised version in H. Putnam, Mathematics, Matter and Method. Philosophical Papers, vol. I,Cambridge University Press, Cambridge, London, New York, Melbourne, pp. 43–59.Google Scholar
  42. Putnam H.: 1975, `What Is Mathematical Truth?’. In: Putnam, H., Mathematics, Matter and Method. Philosophical Papers, vol. I, Cambridge University Press, Cambridge, London, New York, Melbourne, pp. 60–78.Google Scholar
  43. Quine, W. V. 0.: 1951a, Two Dogmas of Empiricism’, Philosophical Review 60/1, 20–43; also in W. V. O. Quine, From a Logical Point of View, Harvard University Press, Cambridge, Mass., pp. 20–46.Google Scholar
  44. Quine, W. V. O.: 1951b, `On Carnap’s Views on Ontology’, Philosophical Studies 2.Google Scholar
  45. Quine, W. V. 0. 1953, `On What There Is’, in W. V. O. Quine, From a Logical Point of View, Harvard University Press, Cambridge, Mass., pp. 1–19.Google Scholar
  46. Resnik, M. D.: 1981, `Mathematics as a Science of Patterns: Ontology and Reference’, Nous 15, 529–550.CrossRefGoogle Scholar
  47. Resnik, M. D.: 1982, `Mathematics as a Science of Patterns: Epistemology’, Nous 16, 95–105.CrossRefGoogle Scholar
  48. Russell, B.: 1903, The Principles of Mathematics, The University Press, Cambridge.Google Scholar
  49. Russell, B.: 1919, Introduction to Mathematical Philosophy, George Alien und Unwin, Ltd., London, and The Macmillan Co., New York.Google Scholar
  50. Shapiro, S.: 1989, `Structure and Ontology’, Philosophical Topics 17, 145–171. Shapiro, S.: 1991, Foundations without Foundationalism, Clarendon Press, Oxford.Google Scholar
  51. Tarski, A.: 1933, Pojgcie prawdy w jgzykach nauk dedukcyjnych (The Notion of Truth in Languages of Deductive Sciences), Nakladem Towarzystwa Naukowego Warszawsklego, Warszawa; English translation, A.: 1933, Pojgcie prawdy w jgzykach nauk dedukcyjnych (The Notion of Truth in Languages of Deductive Sciences), Nakladem Towarzystwa Naukowego Warszawsklego, Warszawa; English translation: `The Concept of Truth in Formalized Languages’, in Logic, Semantics, Metamathematics. Papers From 1923 To 1938, Clarendon Press, Oxford 1965, pp. 152–278.Google Scholar
  52. Whitehead, A. N. and B. Russell: 1910–1913, Principia Mathematica,3 volumes, Cambridge University Press, Cambridge.Google Scholar
  53. Wilder R. L.: 1968, Evolution of Mathematical Concepts. An Elementary Study, John Wiley und Sons, New York.Google Scholar
  54. Wilder R. L.: 1981, Mathematics as a Cultural System, Pergamon Press, Oxford.Google Scholar
  55. Wittgenstein, L.: 1953, Philosophical Investigations, Basil Blackwell, Oxford.Google Scholar
  56. Wittgenstein, L.: 1956, Remarks on the Foundations of Mathematics, Basil Blackwell, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Roman Murawski
    • 1
  1. 1.Adam Mickiewicz UniversityPoland

Personalised recommendations