Free radical intermediates and liver cell necrosis

  • J. R. Gillette
  • S. S. Lau
  • T. J. Monks
  • L. R. Pohl
Chapter

Abstract

It is now well established that differences in the severity and incidence of tissue damage caused by foreign compounds frequently correlate with differences in the covalent binding of chemically reactive metabolites of the foreign compounds with various intracellular components (Snyder et al, 1982). Although such correlations suggest that the toxicities are caused by chemically reactive metabolites, they usually do not by themselves provide direct proof for the identity of the toxic metabolites nor the sequence of events that results in the manifestation of the tissue damage. Indeed, they simply imply that the covalently bound material and the toxic metabolites are derived from common intermediates (Gillette, 1974a,b).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHR, HJ., KING, L.J., NASTAINCZYK, W. & ULLRICH, V. (1980). The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450. Biochem. Pharmac., 29, 2855–2861.CrossRefGoogle Scholar
  2. BELLOMO, G., THOR, H. & ORRENIUS, S. (1984). Increase in cytosolic Ca++ concentration during t-butyl hydroperoxide metabolism by isolated hepatocytes involves NADPH oxidation and mobilization of intracellular Ca++ stores. FEBS Lett., 168, 38–42.CrossRefGoogle Scholar
  3. BUS, J.S. & GIBSON, J.E. (1984). Role of activated oxygen in chemical toxicity. In Drug Metabolism and Drug Toxicity. Mitchell, J.R. & Horning, M.G. (eds) pp. 21–32, New York: Raven Press.Google Scholar
  4. CAPDEVILA, J., CHACOS, N., WERRINGLOER, J., PROUGH, R. & ESTABROOK, R.W. (1982). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc natn. Acad. Sei. U.S.A., 78, 5362–5366.CrossRefGoogle Scholar
  5. DAHLIN, D.C., MIWA, G.T., LU, A.Y.H. & NELSON, S.D. (1984). N-acetyl-p-benzoquinone imine: A cytochrome P-450 mediated oxidation product of acetaminophen. Proc. natn. Acad. Sei. U.S.A., 81, 1327–1331.CrossRefGoogle Scholar
  6. DE MATTEIS, F., GIBBS, A.N., CANTONI, L. & FRANCIS, J. (1980). Substrate-dependent irreversible inactivation of cytochrome P-450: conversion of its haem moiety into modified porphyrins. In Environmental Chemicals, Enzyme Function and Human Disease. Evered, D. & Lawrenson, G. (eds) pp. 119–139. Ciba Foundation Symposium 76 (new series).Google Scholar
  7. DE MATTEIS, F., GIBBS, A.H. & UNSELD, A.P. (1982). Conversion of liver haem into N-substituted porphyrins or green products. In Biological reactive metabolites II. Snyder et al. (ed.) pp. 1319–1334, New York: Plenum Press.Google Scholar
  8. DE VRIES, J. (1981). Hepatotoxic metabolic activation of paracetamol and its derivatives phenacetin and benorilate: Oxygenation or electron transfer. Biochem. Pharmac, 30, 399–402.CrossRefGoogle Scholar
  9. EKLOW, L., MOLDEUS, P. & ORRENIUS, S. (1984). Oxidation of glutathione during hydroperoxide metabolism: A study using isolated hepatocytes and glutathione reductase inhibitor l,3-bis(2-chloroethyl)-l-nitroso urea. Eur. J. Biochem., 138, 459–463.CrossRefGoogle Scholar
  10. FRIDOVITCH, I. (1983). Superoxide radical: An endogenous toxicant. Ann. Rev. Pharmac. Toxic, 23, 239–257.CrossRefGoogle Scholar
  11. GERBER, J.G., MACDONALD, J.S., HARBISON, R.D., VILLENUE, J.-P., WOOD, A.J.J. & NIES, A.S. (1977). Effect of N-acetyl cysteine on hepatic covalent binding of paracetamol (acetaminophen) Lancet, i, 657–658.CrossRefGoogle Scholar
  12. GILLETTE, J.R. (1974a). A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity: I. Correlation of changes in covalent binding of reactive metabolites with changes in the incidence and severity of toxicity. Biochem. Pharmac, 23, 2785–2794.CrossRefGoogle Scholar
  13. GILLETTE, J.R. (1974b). A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity: II. Alterations in the kinetics of covalent binding. Biochem. Pharmac, 23, 2927–2938.CrossRefGoogle Scholar
  14. GILLETTE, J.R., BRODIE, B.B. & LADU, B.N. (1957). The oxidation of drugs by liver microsomes: On the role of TPNH and oxygen. J. Pharmac. exp. Ther., 119, 532–540.Google Scholar
  15. GILLETTE, J.R., LAU, S. & MONKS, T.J. (1984). Intra- and extra-cellular formation of metabolites from chemically reactive species. Biochem. Soc. Trans. 12, 4–7.CrossRefGoogle Scholar
  16. GILLETTE, J.R., NELSON, S.D., MULDER, G.J., JOLLOW, D.J., MITCHELL, J.R., POHL, L.R. & HINSON, J.A. (1982). Formation of chemically reactive metabolites of phenacetin and acetaminophen. In Biological Reactive Intermediates II. Snyder, R., Parke, D.V., Kocsis, J.J., Jollow, D.J., Gibson, CG. & Witmer, CM., (eds) pp. 931–950, New York: Plenum Publishing Co.Google Scholar
  17. GROVES, J.T., MCCLUSKY, G.A., WHITE, R.E. & COON, M.J. (1978). Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical. Biochem. Biophys. Res. Commun., 81, 154–160.CrossRefGoogle Scholar
  18. GUENGERICH, F.P. & MACDONALD. (1984). Chemical mechanisms of catalysis by cytochromes P-450: A unified view. Ace. Chem. Res., 17, 9–16.CrossRefGoogle Scholar
  19. HINSON, J.A., POHL, L.R. & GILLETTE, J.R. (1979). N-Hydroxyacetaminophen: A microsomal metabolite of N-hydroxyphenacetin but apparently not of acetaminophen. Life Sei., 24, 2133–2138.CrossRefGoogle Scholar
  20. HINSON, J.A., POHL, L.R., MONKS, TJ. & GILLETTE, J.R. (1981). Acetaminophen-induced hepatotoxicity. Life Sei., 29, 107–116.CrossRefGoogle Scholar
  21. JOLLOW, D.J., MITCHELL, J.R., POTTER, W.Z., DAVIS, D.C., GILLETTE, J.R. & BRODIE, B.B. (1973). Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmac. exper. Ther., 187, 195–202.Google Scholar
  22. JONES, D.P., EKLOW, L., THOR, H. & ORRENIUS, S. (1981). Metabolism of hydrogen peroxide in isolated hepatocytes. Relative contributions of catalase and glutathione peroxidase in decomposition of en-dogenously generated H202. Archs. Biochem. Biophys., 210, 505–516.CrossRefGoogle Scholar
  23. KUBIC, V.L. & ANDERS, M.W. (1981). Mechanism of the microsomal reduction of carbon tetrachloride and halothan. Chem. Biol. Interactions, 34, 201–207.CrossRefGoogle Scholar
  24. LAU, S.S., MONKS, T.J. & GILLETTE, J.R. (1984a). Multiple reactive metabolites derived from bromobenzene. Drug Metab. Dispos., 12, 291–296.Google Scholar
  25. LAU, S.S., MONKS, T.C. & GILLETTE, J.R. (1984b). Identification of 2-bromohydro-quinone as a metabolite of bromobenzene: Implications for bromobenzene induced nephrotoxicity. J. Pharmac. exp. Ther. (inpress).Google Scholar
  26. LAU, S.S., MONKS, T.C, GREENE, K.E. & GILLETTE, J.R. (1984c). The role of ortho-bromophenol in the nephrotoxicity of bromobenzene in rats. Tox. Appl. Pharmac, 72, 539–549.CrossRefGoogle Scholar
  27. MASON, R.P. & HOLTZMAN, J.L. (1975). Role of catalytic superoxide formation in the oxygen inhibition of nitroreductase. Biochem. biophys. Res. Commun., 67, 1267–1274.CrossRefGoogle Scholar
  28. MASTERS, B.S.S., PROUGH, R.A. & KAMIM, H. (1975). Properties of the stable aerobic and anaerobic half-reduced states of NADPH-cytochrome creductase. Biochemistry, 14, 607–613.CrossRefGoogle Scholar
  29. MCCORD, J.M. & FRIDOVICH, I. (1968). The reduction of cytochrome c by milk xanthine oxidase. J. biol. Chem., 243, 5753–5760.Google Scholar
  30. MICO, B.A. & POHL, L.R. (1982). Reductive oxygenation of carbon tetrachloride: Trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine. Archs. Biochem. Biophys., 225, 596–609.CrossRefGoogle Scholar
  31. MICO, B.A., BRANCHFLOWER, R.W. & POHL, L.R. (1983). Formation of electrophilic chlorine from carbon tetrachloride: Involvement of cytochrome P-450. Biochem. Pharmac, 32, 2357–2360.CrossRefGoogle Scholar
  32. MITCHELL, J.R., JOLLOW, D.J., POTTER, W.Z., DAVIS, D.C., GILLETTE, J.R. & BRODIE, B.B. (1973a). Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmac. exp. Ther., 187, 185–194.Google Scholar
  33. MITCHELL, J.R., JOLLOW, D.J., POTTER, W.Z., GILLETTE, J.R. & BRODIE, B.B. (1973b). Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmac. exp. Ther., 187, 211–217.Google Scholar
  34. MITCHELL, J.R., SMOTH, C.V., LAUTERBURG, B.H., HUGHES, H., CORCORAN, G.B. & HORNING, E.C. (1984). Reactive metabolites and the pathophysiology of acute lethal cell injury. In Drug metabolism and Drug Toxicity. Mitchell, J.R. & Horning, M.G. (eds) pp. 301–319, New York: Raven Press.Google Scholar
  35. MONKS, T.J., HINSON, J.A. & GILLETTE, J.R. (1982). Bromobenzene and p-bromophenol toxicity and covalent binding in vivo. Life Sei., 30, 841–848.CrossRefGoogle Scholar
  36. MONKS, T.J., LAU, S. & GILLETTE, J.R. (1984). Diffusion of reactive metabolites out of hepatocytes: studies with bromobenzene. J. Pharmac. exp. Ther., 228, 393–399.Google Scholar
  37. NELSON, S.D., DAHLIN, D.C, RAUCKMAN, E.J. & ROSEN, G.M. (1981). Peroxidase-mediated formation of reactive metabolites of acetaminophen. Mol. Pharmac, 20, 195–199.Google Scholar
  38. NELSON, S.D., FORTE, A.J. & DAHLIN, D.C. (1980). Lack of evidence of N-hydroxy-acetaminophen as a reactive metabolite of acetaminophen in vitro. Biochem. Pharmac, 29, 1617–1620.CrossRefGoogle Scholar
  39. NELSON, S.D., MITCHELL, J.R., DYBING, E. & SASAME, H.A. (1976). Cytochrome P-450 mediated oxidation of 2-hydroxyestrogens to reactive intermediates. Biochem. biophys. Res. Commun., 70, 1157–1165.CrossRefGoogle Scholar
  40. OPRIAN, D.D. & COON, M.J. (1982). Reactions of oxygenated Plm In Microsomes, Drug Oxidations and Drug Toxicity. Sato, R. & Kato, R. (eds) pp. 139–145, New York: Wiley-Interscience.Google Scholar
  41. ORTIZ DE MONTELLANO, P.R. (1984). Alkenes and alkynes. In Bioactivation of Foreign Compounds. Anders, M.W. (ed.) New York: Academic Press, (in press).Google Scholar
  42. ORTIZ DE MONTELLANO, P.R. & CORREIA, M.A. (1983). Suicidal destruction of cytochrome P-450 during oxidative drug metabolism. Ann. Rev. Pharmac. Toxic, 23, 481–503.CrossRefGoogle Scholar
  43. POHL, L.R. & GEORGE, J.W. (1983). Identification of dich-loromethyl carbene as a metabolite of carbon tetrachloride. Biochem. biophys. Res. Commun., 117, 367–371.CrossRefGoogle Scholar
  44. POHL, L.R. & KRISHNA, G. (1978). Deuterium isotope effect in bioactivation and hepatotoxicity of chloroform. Life Sei., 23, 1067–1072.CrossRefGoogle Scholar
  45. POHL, L.R., BHOOSHAN, B., WHITTAKER, N.F. & KRISHNA, G. (1977). Phosgene: A metabolite of chloroform. Biochem. biophys. Res. Commun., 79, 684–691.CrossRefGoogle Scholar
  46. POHL, L.R., BRANCHFLOWER, R.V., HIGHET, R.J., MARTIN, J.L., NUNN, D.S., MONKS, T.J., GEORGE, J.W. & HINSON, J.A. (1981). The formation of diglutathionyl dithiocarbonate as a metabolite of chloroform, bromotrichloromethane, and carbon tetrachloride, Drug Metabol. Disp., 9, 334–339.Google Scholar
  47. POHL, L.R., GEORGE, J.W., MARTIN, J.L. & KRISHNA, G. (1979). Deuterium isotope effect in in vivo bioactivation of chloroform to phosgene. Biochem. Pharmac, 28, 561–563.CrossRefGoogle Scholar
  48. POHL, L.R., SCHULICK, R.D., HIGHET, R.J. & GEORGE, J.W. (1984). Reductive oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450. Mol. Pharmac, 25, 318–321.Google Scholar
  49. POTTER, W.A., DAVIS, D.C., MITCHELL, J.R., JOLLOW, D.J., GILLETTE, J.R. & BRODIE, B.B. (1973). Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J. Phar-mac. exp. Ther., 187, 203–210.Google Scholar
  50. RECKNAGEL, R.P., GLENDE, E.A. & HRUSZKEWYCZ, A.M. (1977). Chemical mechanism in carbon tetrachloride toxicity. In Free Radicals in Molecular Biology and Pathology, Vol. III. Pryor, W.A. (ed.) pp. 97–132, New York: Academic Press.Google Scholar
  51. ROSEN, G.M., RAUCKMAN E.J., ELLINGTON, S.P., DAHLIN, D.C., CHRISTIE, J.L. & NELSON, S.D. (1984). Reduction and glutathione conjugation reactions of N-acetyl p-benzoquinone imine and two dimethylated analogues. Mol Pharmac, 25, 151–157.Google Scholar
  52. SAWAHATA, T. & NEAL, R. A. (1983). Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Mol Pharmac, 23, 453–460.Google Scholar
  53. SLATER, T.F. (1982). Free radicals as reactive intermediates in tissue injury In Biological Intermediates II. Snyder, R., Parke, D.V., Kocsis, J.J., Gibson, C.G. & Witmer, CM. (eds), pp. 575–589, New York: Plenum Press.CrossRefGoogle Scholar
  54. SNYDER, R., PARKE, D.V., KOCSIS, J.J., JOLLOW, D.J., GIBSON, C.G., & WITMER, CM. (1982). Biological Intermediates II. New York: Plenum Press.CrossRefGoogle Scholar
  55. THOR, H., SVENSSON, S-A., HARTZELL, P. & ORRENIUS, S. (1982). Biotransformation of bromobenzene to reactive metabolites by isolated hepatocytes. In Biological Reactive Intermediates II. Snyder, R., Parke, D.V., Kocsis, J.J., Jollow, D.J., Gibson, CG. & Witmer, CM. (eds) pp. 287–299, New York: Plenum Press.CrossRefGoogle Scholar
  56. TORANZO, E.G.D. DE, DIAZ GOMEZ, M.I. & CASTRO, J. A. (1978). Carbon tetrachloride activation, lipid peroxidation and liver necrosis in different strains of mice. Res. Commun. Chem. Path. Pharmac, 19, 347–352.Google Scholar
  57. WOLF, CR., HARRELSON, W.G., NASTAINCZYK, W., PHILPOT, R.M., KALYANARAMAN, B. & MASON, R.P. (1980). Metabolism of carbon tetrachloride in hepatic microsomes and reconstituted monooxygenase systems and its relationship to lipid peroxidation. Mol Pharmac, 18, 553–558.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • J. R. Gillette
    • 1
  • S. S. Lau
    • 1
  • T. J. Monks
    • 1
  • L. R. Pohl
    • 1
  1. 1.Laboratory of Chemical Pharmacology, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations