Skip to main content

Physicochemical properties in structure-activity analysis

  • Chapter
  • 42 Accesses

Abstract

Prominent among the methods of relating structure to biological activity, in order to rationalise drug activity and to predict novel analogues for synthesis, is the quantitative approach popularly known as Hansch Analysis (Hansch et al., 1963; Hansch, 1981). In Hansch Analysis, the biological activities of a parent molecule and a series of simple derivatives are subjected to regression analysis to find an equation relating activity to some combination of parameters representing changes in hydrophobic, electronic, and steric effects within the series. This enables conclusions to be drawn regarding the influence of physicochemical properties on drug transport or on drug binding.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • CHEUNG, H.S., WANG, F.L., ONDETTI, M.A., SABO, E.F. & CUSHMAN, D.W. (1980). Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. J. biol. Chem., 255, 401–407.

    Google Scholar 

  • CUSHMAN, D.W., CHEUNG, H.S., SABO, E.F. & ONDETTI, M.A. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry, 16, 5484–5491.

    Article  Google Scholar 

  • FUJINAGA, M. & JAMES, M.N.G. (1980). SQ 14,225: 1-(D-3-mercapto-2- methyl-propionyl)-L-proline. Acta cryst., B36, 3196–3199.

    Article  Google Scholar 

  • HAGLER, A.T., HULER, E. & LIFSON, S. (1974). Energy functions for peptides and proteins. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. chem. Soc, 96, 5319–5327.

    Article  Google Scholar 

  • HANSCH, C, MUIR, R.M., FUJITA, T., MALONEY, P.P., GEIGER, F. & STREICH, M. (1963). The correlation of biological activity of plant growth regulators and Chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. chem. Soc., 84, 2817–2824.

    Article  Google Scholar 

  • HANSCH, C, DEUTSCH, E.W. & NELSON SMITH, R. (1965). The use of substituent constants and regression analysis in the study of enzymatic reaction mechanisms. J. Am. chem. Soc, 87, 2738–2742.

    Article  Google Scholar 

  • HANSCH, C. (1981). The physicochemical approach to drug design and discovery (QSAR). Drug Development Research, 1, 267–309.

    Article  Google Scholar 

  • HASSALL, C.H., KRÖHN, A., MOODY, C.J. & THOMAS, W.A. (1984). The design and synthesis of new triazolo, pyrazolo-, and pyridazo-pyridazine derivatives as inhibitors of angiotensin converting enzyme. J. chem. Soc. Perkin I, 155–164.

    Article  Google Scholar 

  • KIM, D.H., GUINOSSO, C.J., BUZBY, G.C., HERBST, D.R., McCAULLY, R.J., WICKS, T.C. & WENDT, R.L. (1983). Mercaptopropanoyl-indoline-2-carboxylic acids and related compounds as potent angiotensin converting enzyme inhibitors and antihypertensive agents. J. med. Chem., 26, 394–403.

    Article  Google Scholar 

  • LIPSCOMB, W.N., REEKE, G.N., HARTSUCK, J. A., QUIOCHO, F.A. & BETHGE, P.H. (1970). The structure of carboxypeptidase A. VIII: Atomic interpretation at 0.2nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Phil. Trans. R. Soc, B257, 177–214.

    Article  Google Scholar 

  • MONZINGO, A.F. & MATTHEWS, B.W. (1982). Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans. Biochemistry, 21, 3390–3394.

    Article  Google Scholar 

  • NORTH, A.C.T. (1982). Use of interactive computer graphics in studying molecular structures and interactions. Chem. and Ind., 221–225.

    Google Scholar 

  • OSAWA, E. & MUSSO, H. (1982). Application of molecular mechanics calculations to organic chemistry. Top. Stereochem., 13, 117–193.

    Google Scholar 

  • PATCHETT, A.A., HARRIS, E., TRISTRAM, E.W., WYVRATT, M.J., WU, M.T., TAUB, D. & 21 OTHERS. (1980). A new class of angiotensin-converting enzyme inhibitors. Nature, 288, 280–283.

    Article  Google Scholar 

  • PETRILLO, E.W. & ONDETTI, M.A. (1982). Angiotensinconverting enzyme inhibitors: medicinal chemistry and biological actions. Med. Res. Revs., 2, 1–41.

    Article  Google Scholar 

  • SHAPIRO, R. & RIORDAN, J.F. (1983). Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry, 22, 5315–5321.

    Article  Google Scholar 

  • SUTTON, L.E. (1958,1965). Tables of interatomic distances and configuration in molecules and ions. Special publication nos. 11,18. The Chemical Society, London.

    Google Scholar 

  • WHITE, D.N.J. & BOVILL, M.J. (1977). Molecular mechanics calculations on alkanes and non-conjugated alkenes. J. chem. Soc. Perkin II, 1610–1623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Tute, M.S. (1984). Physicochemical properties in structure-activity analysis. In: Paton, W., Mitchell, J., Turner, P. (eds) IUPHAR 9th International Congress of Pharmacology. Palgrave, London. https://doi.org/10.1007/978-1-349-86029-6_14

Download citation

Publish with us

Policies and ethics