N.m.r. studies of drug-receptor interactions as an aid to drug design

  • G. C. K. Roberts
Chapter

Abstract

The importance of the relation between the structure of drugs and their biological activity has been recognised for almost 300 years (Locke, 1690). With the development of the idea of the receptor at the beginning of this century, the conceptual framework for modern structure-activity analysis was established. Over the ensuing years increasingly sophisticated studies of the relationships between chemical structure, conformation and physicochemical properties on the one hand and biological activity on the other, have made major contributions to the design of new and effective drugs, although for most systems the receptor remained simply an idea.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANTONJUK, D.J., BIRDSALL, B., CHEUNG, H.T.A., CLORE, G.M., FEENEY, J., GRONENBORN, A., ROBERTS, G.C.K & TRAN, T.Q. (1984). A H n.m.r. study of the role of the glutamate moiety in the binding of methotrexate to Lactobacillus casei dihydrofolate reductase. Br. J. Pharmac, 81, 309–315.CrossRefGoogle Scholar
  2. BACCANARI, D.P., DALUGE, S. & KING, R.W. (1982). Inhibition of dihydrofolate reductase: effect of reduced selectivity and affinity of diaminobenzylpyrimidines. Biochemistry, 21, 5068–5075.CrossRefGoogle Scholar
  3. BAKER, D.J., BEDDELL, C.R., CHAMPNESS, J.N., GOOD-FORD, P.J., NORRINGTON, F.E.A., SMITH, D.R. & STAMMERS, D.K. (1981). The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett., 126, 49–52.CrossRefGoogle Scholar
  4. BAKER, D.J., BEDDELL, C.R., CHAMPNESS, J.N., GOOD-STAMMERS, D.K. (1983). X-ray studies of the binding of trimethoprim, methotrexate, pyrimethamine and two trimethoprim analogues to bacterial dihydrofolate reductase. In Chemistry and Biology of Pteridines. Blair, J.A. (ed.) pp. 545–549, Berlin: de Gruyter.Google Scholar
  5. BEDDELL, C.R. (1984). Dihydrofolate reductase: its structure, function and binding properties. In: X-ray crystallography and drug action, Horn, A.S. & de Ranter, C.J. (eds) pp. 169–193, Oxford: Clarendon Press.Google Scholar
  6. BIRDSALL, B., GRONENBORN, A., CLORE, G.M., HYDE, E.I., ROBERTS, G.C.K., FEENEY, J. & BURGEN, A.S.V. (1982). 1H, 13C and 31P n.m.r. studies of the dihydrofolate reductase-nicotinamide adenine dinucleotide phosphate-folate complex: characterisation of three coexisting conformational states. Biochemistry, 21, 5831–5838.CrossRefGoogle Scholar
  7. BIRDSALL, B., ROBERTS, G.C.K., FEENEY, J., DANN, J.G. & BURGEN, A.S.V. (1983). Trimethoprim binding to bacterial and mammalian dihydrofolate reductase: a comparison by 1H and 13C nuclear magnetic resonance. Biochemistry, 22, 5597–5604.CrossRefGoogle Scholar
  8. BIRDSALL, B., BEVAN, A.W., PASCUAL, C, ROBERTS, G.C.K., FEENEY, J., GRONENBORN, A. & CLORE, G.M. (1984a). Multinuclear n.m.r. characterisation of two coexisting conformational states of the Lactobacillus casei dihydrofolate reductase-trimethoprim-NADP+ complex. Biochemistry (in press).Google Scholar
  9. BIRDSALL, B., FEENEY, J., PASCUAL, C, ROBERTS, G.C.K., KOMPIS, L, THEN R.L., MÜLLER, K. & KROEHN, A. (1984b). A H n.m.r. study of the interactions and conformations of rationally designed brodimoprim analogues in complexes with Lactobacillus casei dihydrofolate reductase. J. med. Chem. (in press).Google Scholar
  10. BOLIN, J.T., FILMAN, D.J., MATTHEWS, D.A. & KRAUT, J. (1982). Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. I. General features and binding of methotrexate. J. biol. Chem., 257,13650–13662.Google Scholar
  11. BURCHALL, J.J. & HITCHINGS, G.H. (1965). Inhibitor binding analysis of dihydrofolate reductases from various species. Mol. Pharmac, 1, 126–136.Google Scholar
  12. CAYLEY, P.J., ALBRAND, J.P., FEENEY, J., ROBERTS, G.C.K., PIPER, E.A. & BURGEN, A.S.V. (1979). Nuclear magnetic resonance studies of the binding of trimethoprim to dihydrofolate reductase. Biochemistry, 18, 3886–3895.CrossRefGoogle Scholar
  13. CHARLTON, P.A., YOUNG, D.W., BIRDSALL, B., FEENEY, J. & ROBERTS, G.C.K. (1979). Stereochemistry of reduction of folic acid using dihydrofolate reductase. J. Chem. Soc. Chem. Comm., 922–924.Google Scholar
  14. COCCO, L., GROFF, J.P., TEMPLE, C. Jr, MONTGOMERY, J.A., LONDON, R.E., MATWIYOFF, N.A. & BLAKLEY, R.L. (1981). 13C nuclear magnetic resonance study of protonation of methotrexate and aminopterin bound to dihydrofolate reductase. Biochemistry, 20, 3972–3978.CrossRefGoogle Scholar
  15. COCCO, L., ROTH, B., TEMPLE, C Jr, MONTGOMERY, J.A., LONDON, R.E. & BLAKLEY, R.L. (1983). Protonated states of methotrexate, trimethoprim and pyrimethamine bound to dihydrofolate reductase. Arch. Biochem. Biophys., 226, 567–577.CrossRefGoogle Scholar
  16. DANN, J.G., OSTLER, G., BJUR, R.A., KING, R.W., SCUDDER, P., TURNER, P.C., ROBERTS, G.C.K., BURGEN, A.S.V. & HARDING, N.G.L. (1976). Large-scale purification and characterization of dihydrofolate reductase from a methotrexate-resistant strain of Lactobacillus casei. Biochem. J., 157, 559–571.CrossRefGoogle Scholar
  17. DIETRICH, S.W., BLANEY, J.M., REYNOLDS, M.A., JOW, P.Y.C. & HANSCH, C. (1980). Quantitative structure-activity relationships. Comparison of the inhibition of Escherichia coli and bovine liver dihydrofolate reductase by 5(substituted benzyl)2,4-diaminopyrimidines. J. med. Chem., 23, 1205–1212.CrossRefGoogle Scholar
  18. FEENEY, J., BIRDSALL, B., ROBERTS, G.C.K. & BURGEN, A.S.V. (1983). Use of transferred nuclear Overhauser effect measurements to compare binding of coenzyme analogues to dihydrofolate reductase. Biochemistry, 22, 628–633.CrossRefGoogle Scholar
  19. FILMAN, D.J., BOLIN, J.T., MATTHEWS, D.A. & KRAUT, J. (1982). Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. II Environment of bound NADPH and implications for catalysis. J. biol. Chem., 257, 13663–13672.Google Scholar
  20. FONTECILLA-CAMPS, J.C., BUGG, CE., TEMPLE, C. Jr, ROSE, J.D., MONTGOMERY, J.A. & KISLIUK, R.L. (1979). Absolute configuration of biological tetrahydrofolates. A crystallographic determination. J. Am. Chem. Soc, 101, 6114–6115.CrossRefGoogle Scholar
  21. FUTTERMAN, S. (1957). Enzymatic reduction of folic acid and dihydrofolic acid to tetrahydrofolic acid. J. biol. Chem., 228, 1031–1038.Google Scholar
  22. GRONENBORN, A., BIRDSALL, B., HYDE, E.I., ROBERTS, G.C.K., FEENEY, J. & BURGEN, A.S.V. (1981a). Direct observation by n.m.r. of two coexisting conformations of an enzyme-ligand complex in solution. Nature, 290, 273–274.CrossRefGoogle Scholar
  23. GRONENBORN, A., BIRDSALL, B., HYDE, E.I., ROBERTS, G.C.K., FEENEY, J. & BURGEN, A.S.V. (1981b). 1H and 31P n.m.r. characterisation of two conformations of the trimethoprim-NADP+-dihydrofolate reductase complex. Mol. Pharmac, 20, 145–153.Google Scholar
  24. HANSCH, C, HATHAWAY, B.A., GUO, Z., SELASSIE, CD., DIETRICH, S.W., BLANEY, J.M., LANGRIDGE, R., VOLZ, K.W. & KAUFMAN, B.T. (1984). Crystallography, quantitative structure-activity relationships and molecular graphics in a comparative analysis of the inhibition of dihydrofolate reductase from chicken liver and Lactobacillus casei by 4,6-diamino-1,2-dihydro-2,2-dimethyl-l-(substituted phenyl)-5-triazines. J. med. Chem., 27, 129–143.CrossRefGoogle Scholar
  25. HITCHINGS, G.H. & ROTH, B. (1980). Dihydrofolate reductases as targets for selective inhibitors. In Enzyme Inhibitors as Drugs, Sandler, M. (ed.) pp. 263–280, London: Macmillan.Google Scholar
  26. HYDE, R.M. & ROTH, B. (1982). Some aspects of a QSAR analysis of trimethoprim analogues. In Strategy in Drug Research, Keverling Buisman, J.A. (ed.) pp. 385–409, Amsterdam: Elsevier.Google Scholar
  27. JARDETZKY, O. & ROBERTS, G.C.K. (1981). N.M.R. in Molecular Biology, New York: Academic Press.Google Scholar
  28. JENCKS, W.P. (1975). Binding energy, specificity and enzymic catalysis: the Circe effect. Adv. Enzymol., 43, 219–410.Google Scholar
  29. KANNAN, K.K., VAARA, I., NOSTRAND, B., LOVGREN, S., BORELL, A., FRIDBORG, K. & PETEF, M. (1977). Structure and function of carbonic anhydrase: comparative studies of sulphonamide binding to human erythrocyte carbonic anhydrases B and C. In Drug Action at the Molecular Level, Roberts, G.C.K. (ed.) pp. 73–91, London: Macmillan.Google Scholar
  30. KOETZLE, T.F. & WILLIAMS, G.J.B. (1976). The crystal and molecular structure of the anti-folate drug trimethoprim (2,4-diamino-5-(3,4,5-trimethoxy-benzyl)pyrimidine): a neutron diffraction study. J. Am. Chem. Soc, 98, 2074–2078.CrossRefGoogle Scholar
  31. KUYPER, L.F., ROTH, B., BACCANARI, D.P., FERONE, R., BEDDELL, CR., CHAMPNESS, J.N., STAMMERS, D.K., DANN, J.G., NORRINGTON, F.E.A., BAKER, D.J. & GOODFORD, P.J. (1982). Receptor-based design of dihydrofolate reductase inhibitors: comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogues. J. med. Chem. ,25, 1120–1122.CrossRefGoogle Scholar
  32. LI, R.L., DIETRICH, S.W. & HANSCH, C. (1981). Quantitative structure-selectivity relationships. Comparison of the inhibition of Escherichia coli and bovine liver dihydrofolate reductase by 5(substituted benzyl)-2,4-diaminopyrimidines. J. med. Chem., 24, 538–544.CrossRefGoogle Scholar
  33. LI, R.L., HANSCH, C, MATTHEWS, D., BLANEY, J.M., LANGRIDGE, R., DELCAMP, T.J., SUSTEN, S. & FREISHEIM, J.H. (1982). A comparison by QSAR, crystallography and computer graphics of the inhibition of various dihydrofolate reductases by 5-(X-benzyl)-2,4- diaminopyrimidines. Quant. Struct.-Act. Relat., 1, 1–7.CrossRefGoogle Scholar
  34. LOCKE, J. (1690). Essay Concerning Human Understanding, Book IV. Chapter III.Google Scholar
  35. LONDON, R.E., GROTT, J.P., COCCO, L. & BLAKLEY, R.L. (1982). Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labelled with [γ-13C]tryptophan. Biochemistry, 21, 4450–4458.CrossRefGoogle Scholar
  36. MATTHEWS, D.A., ALDEN, R.A., BOLIN, J.T., FREER, S.T., HAMLIN, R., XUONG, N., KRAUT, J., POIE, M., WILLIAMS, M.N. & HOOGSTEEN, K. (1977). Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science, 197, 452–455.CrossRefGoogle Scholar
  37. ROBERTS, G.C.K. (1983a). The interaction of substrates and inhibitors with dihydrofolate reductase. In Chemistry and Biology of Pteridines, Blair, J.A. (ed.) pp. 197–214, Berlin: de Gruyter.Google Scholar
  38. ROBERTS, G.C.K. (1983b). Flexible keys and deformable locks: ligand binding to dihydrofolate reductase. In Quantitative Approaches to Drug Design, Dearden, J.C. (ed.) pp. 91–98, Amsterdam: Elsevier.Google Scholar
  39. ROBERTS, G.C.K., FEENEY, J., BURGEN, A.S.V. & DALUGE, S. (1981). The charge state of trimethoprim bound to Lactobacillus casei dihydrofolate reductase. FEBS Letts., 131, 85–88.CrossRefGoogle Scholar
  40. ROTH, B. (1983). Selective inhibitors of bacterial dihydrofolate reductase: structure-activity relationships. Handb. Exp. Pharmakol., 64, 107–127.CrossRefGoogle Scholar
  41. ROTH, B. & CHENG, C.C. (1982). Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines. Prog. Med. Chem., 19, 269–331.CrossRefGoogle Scholar
  42. VOLZ, K.W., MATTHEWS, D.A., ALDEN, R.A., FREER, S.T., HANSCH, C, KAUFMAN, B.T. & KRAUT, J. (1982). Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH. J. biol. Chem., 257, 2528–2536.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • G. C. K. Roberts
    • 1
  1. 1.Division of Physical BiochemistryNational Institute for Medical ResearchLondonUK

Personalised recommendations