From foxglove to the heart: classification and mode of action of inotropic agents

  • T. Godfraind


The pharmacological identification of positive and negative inotropic agents requires only classical and simple experimental methods. However, the haemodynamic effects of such agents cannot easily be predicted from the response of an isolated heart preparation. This is not only due to the role played by vascular effects in the resulting cardiac output, but also because heart failure which represents the main therapeutic indication of inotropic agents, is a complex pathophysiological situation that can be caused by various diseases and also by drug intoxications. In this report, I would like to examine some of the factors encountered in heart failure with the purpose to illustrate the concept that heart failure is the obvious manifestation of different alterations. Then, I will briefly review the most important classes of drugs (β agonists and cardiac glycosides), and discuss the properties of endogenous factors that could play a role in physiological and pathological situations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS, R.Y., SCHWARTZ, A., GRUPP, H., GRUPP, I.L., SKIN-UBONG, L., WALLICK, E.T., POWELL, T., TWIST, V.W. & GOTHIRAM, P. (1982). High-affinity ouabain binding site and low dose positive inotropic effect in rat myocardium. Nature, 296,167–169.CrossRefGoogle Scholar
  2. AKERA, T. (1981). Effects of cardiac glycosides on (Na + K)-ATPase. In Cardiac Glycosides. Greef, K. (ed.) pp. 287–383, Berlin/Heidelberg/New York: Springer Verlag.CrossRefGoogle Scholar
  3. AHLQUIST, R.P. (1948). A study of the adrenotropic receptors. Am. J. Physiol., 153, 586–600.Google Scholar
  4. AMERY, A., FAGARD, R., LIJNEN, P. & REYBROUK, T. (1977). Atenolol and plasma renin concentration in hypertensive patients. Postgrad. Med. J., (Suppl. 3), 116–119.Google Scholar
  5. ARINIEGO, R., WAAGSTEIN, F., MOMBAY, B. & HJAL-MARSON, A. (1979). Haemodynamic effects of a new beta, receptor agonist in acute myocardial infarction. Br. Heart J., 42,139–146.CrossRefGoogle Scholar
  6. BARLOW, J.J., MAIN, B.G., MOORS, J.A., NUTTAL, A. & SNOW, H.M. (1979). The cardiovascular activity of ICI 118,587, a novel β adrenoceptor partial agonist. Br. J. Pharmac., 67, 412P.Google Scholar
  7. BLINKS, J.R., WIER, W.G., MORGAN, J. & HESS, P. (1982). Regulation of intracellular [Ca++] by cardiotonic drugs. In Advances in Pharmacology and Therapeutics, II/3, Cardiorenal and Cell Pharmacology. Yoshida, H., Hagihara, Y. & Ebashi, S. (eds) pp. 205–216, Oxford/ New York: Pergamon Press.Google Scholar
  8. CANEPA-ANSON, R., DAWSON, J.R., FRANKL, W. et al. (1982). Beta2 adrenoceptor agonists — pharmacology, metabolic effects and arrhythmias. Eur. Heart J., 3, (Suppl. D), 129–134.Google Scholar
  9. CHIDSEY, CA., HARRISON, D.C. & BRAUNWALD, E. (1962). Augmentation of the plasma norepinephrine response to exercise in patients with congestive heart failure. N. Eng. J. Med., 267, 650–654.CrossRefGoogle Scholar
  10. COLUCCI, W.S., ALEXANDER, R.W., WILLIAMS, G.H., RUDE, R.E., HOLMAN, B.L., KONSTAM, M.A., WYNNE, J., MUDGE, G.H. & BRAUNWALD, D.E. (1981). Decreased lymphocyte beta-adrenergic receptor density in patients with heart failure and tolerance to the beta-adrenergic agonist Pirbuterol. N. Eng. J. Med., 305, 185–190.CrossRefGoogle Scholar
  11. DAWSON, J.R., BAYLISS, J., NORELL, M.S. et al. (1982). Clinical studies with beta2 adrenoceptor agonists in heart failure. Eur. Heart J., 3, (Suppl. D), 135–141.Google Scholar
  12. EBASHI, S., NAKAMURA, S., NAKASONI, H., KOHAMA, K. & NONOMURA, Y. (1982). Differences and similarities of contractile mechanism in muscle. In Calcium Modulators. Godfraind, T., Albertini, A. & Paoletti, R. (eds) pp. 39–49, Amsterdam/New York/Oxford: Elsevier North Holland/Biomedical Press.Google Scholar
  13. ERDMANN, E. & SCHONER, W. (1973).Ouabain-receptor interactions in (Na + K)-ATPase preparations. II. Effect of cations and nucleotides on rate constants and dissociation constants. Biochim. biophys. Acta, 330, 302–315.CrossRefGoogle Scholar
  14. ERDMANN, E., PHILIPP, G. & SCHOLZ, H. (1980). Cardiac glycoside receptor, (Na + K)-ATPase activity and force of contraction in rat heart. Biochem. Pharmac, 29, 3219–3229.CrossRefGoogle Scholar
  15. FABIATO, A. & FABIATO, F. (1979). Calcium and cardiac excitation-contraction coupling. A. Rev. Physiol., 41, 473–484.CrossRefGoogle Scholar
  16. FINET, M., GODFRAIND, T. & NOËL, F. (1983). The inotropic effect of ouabain and its antagonism by dihydroouabain in rat isolated atria and ventricles in relation to specific binding sites. Br. J. Pharmac, 80, 751–759.CrossRefGoogle Scholar
  17. GHYSEL-BURTON, J. & GODFRAIND, T. (1979). Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on guinea-pig isolated atria. Br. J. Pharmac, 66,175–184.CrossRefGoogle Scholar
  18. GODFRAIND, T. (1975). Cardiac glycoside receptors in the heart. Biochem. Pharmac, 24, 823–827.CrossRefGoogle Scholar
  19. GODFRAIND, T. (1980). Stimulation et inhibition de la pompe à sodium par les hétérosides cardiotoniques. Bull. Acad. Roy. Méd. Belg., 135,174–192.Google Scholar
  20. GODFRAIND, T. (1982). Pharmacology of calcium entry blockers. In Calcium Modulators. Godfraind, T., Albertini, A. & Paoletti, R. (eds) pp 51–65, Amsterdam/New York/Oxford: Elsevier/North Holland Biomedical Press.Google Scholar
  21. GODFRAIND, T. (1984). Drug induced cardionecrosis. Arch. Toxicol, (in press).Google Scholar
  22. GODFRAIND, T. & GHYSEL-BURTON, J. (1977). Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature, 265,165–166.CrossRefGoogle Scholar
  23. GODFRAIND, T. & GHYSEL-BURTON, J. (1980). Independence of the positive inotropic effect of ouabain from the inhibition of the heart Na/K pump. Proc. natn. Acad. Sci. U.S.A., 77, 3067–3069.CrossRefGoogle Scholar
  24. GODFRAIND, T. & STURBOIS, X. (1979). An analysis of the reduction by creatinol-O-phosphate of the myocardial lesions evoked by isoprenaline in the rat. Arzneim. Forsch./Drug Res., 29, 1457–1464.Google Scholar
  25. GODFRAIND, T., DE PO VER, A., CASTANADA HERNANDEZ, G. & FAGOO, M. (1982). Cardiodigin: endogenous digitalis-like material from mammalian heart. Arch. int. Pharmacodyn. Ther., 258, 165–167.Google Scholar
  26. GODFRAIND, T., FINET, M., SOCRATES LIMA, J. & MILLER, R.C. (1984). The contractile activity of human coronary arteries and human myocardium in vitro and their sensitivity to Ca entry blockade by nifedipine J. Pharmac. exp. Ther. (in press).Google Scholar
  27. GRUPP, G., GRUPP, I.L., GHYSEL-BURTON, J., GODFRAIND, T. & SCHWARTZ, A. (1982). Effects of very low concentrations of ouabain in contractile force of isolated guinea-pig, rabbit and cat atria and right ventricular papillary muscles: an interinstitutional study. J. Pharmac. exp. Ther., 220, 145–151.Google Scholar
  28. HART, G., NOBLE, D. & SHIMONI, Y. (1983). The effects of low concentrations of cardiotonic steroids on membrane currents and tension in sheep Purkinje fibers. J. Physiol, 334,103–131.CrossRefGoogle Scholar
  29. HEARSE, D.J. & DE LEIRIS, J. (1979). Enzymes in cardiology. New York: John Wiley & Sons.Google Scholar
  30. HJALMARSON, A., ABELARDO, N., CAIDAHL, K., REYES, C, WAAGSTEIN, F., WALLENTIN, I., WIK-STRAND, J. & ESTRADA-YAMAMOTO, M. (1980). Effects of prenalterol administered orally in patients with congestive heart failure. Acta. Med. Scand., Suppl., 659, 201–220.Google Scholar
  31. KATZ, A.M. & SMITH, V.G. (1982). Regulation of myocardial function in the normal and diseased heart. Modification by inotropic drugs. Eur. Heart J., 3,11–18.Google Scholar
  32. LANGER, G.A. (1983). The sodium pump lag revisited. J. Mol. Cell. Cardiol, 15, 647–651.CrossRefGoogle Scholar
  33. LECHAT, P., MALLORY, CR. & SMITH, T.W. (1983). Active transport and inotropic state in guinea-pig left atrium. Circ. Res., 52, 411–422.CrossRefGoogle Scholar
  34. MATSUI, H. & SCHWARTZ, A. (1966). Kinetic analysis of ouabain-K and Na interaction on a Na,K-dependent adenosine triphosphatase from cardiac tissue. Biochem. biophys. Res. Commun., 25,147–152.CrossRefGoogle Scholar
  35. MOREL, N. & GODFRAIND, T. (1984). Na-Ca exchange in smooth-muscle microsomal fractions. Biochem. J., 218, 421–427.CrossRefGoogle Scholar
  36. NOBLE, D. (1980). Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovascular Res., 14, 495–514.CrossRefGoogle Scholar
  37. NOËL, F. & GODFRAIND, T. (1984). Heterogeneity of ouabain specific binding sites and (Na + K)-ATPase inhibition in microsomes from rat heart. Biochem. Pharmac, 33, 47–53.CrossRefGoogle Scholar
  38. OPIE, L.H. (1976). Effects of regional ischemia on metabolism of glucose and fatty acids. Circulation Res., 38 (Suppl. 1), 52–74.Google Scholar
  39. OPIE, L.H., OWEN, P., THOMAS, M. & SAMSON, R. (1973). Coronary sinus lactate measurements in assessment of myocardial ischemia. Am. J. Cardiol, 32, 295–307.CrossRefGoogle Scholar
  40. PEARLMAN, E.S., WEBER, K.T., JANICKI, J.S., PIETRA, G.G. & FISHMAN, A.P. (1982). Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab. Invest., 46, 158–164.Google Scholar
  41. POOLE-WILSON, P.A., HARDING, D., BOURDILLON, P. & FLEETWOOD, G. (1982). Mechanism of myocardial protection through Ca2+ blockade. In Protection of tissue against hypoxia, pp. 351, Amsterdam/New York/ Oxford: Elsevier Biomedical Press.Google Scholar
  42. RAJFER, S.I., ANTON, A.H., ROSSEN, J.D. & GODLBERG, L.I. (1984). Beneficial hemodynamic effect of oral levodopa in heart failure N. Eng. J. Med., 310, 1357–1362.CrossRefGoogle Scholar
  43. REPKE, K. (1963). Metabolism of cardiac glycosides. In Proceedings of the First International Pharmacological Meeting, Stockholm, Wilbrandt, W. (ed.), pp. 47–74, New York: Pergamon Press.Google Scholar
  44. REUTER, H. (1983). Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 301, 569–574.CrossRefGoogle Scholar
  45. RIEGER, G.A., LIEBAU, G. & KOCHSIEK, K. (1982). Antidiuretic hormone in congestive heart failure. Amer. J. Med., 72, 49–52.CrossRefGoogle Scholar
  46. ROUSSEAU, M.F., POULEUR, H. & VINCENT, M.F. (1983). Effects of a cardioselective beta, partial agonist (Corwin) on left ventricular function and myocardial metabolism in patients with previous myocardial infarction. Am. J. Cardiol., 51, 1267–1281.CrossRefGoogle Scholar
  47. SCHRAMM, M., THOMAS, G., TOWART, R. & FRANC-KOWIAK, G. (1983). Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature, 303, 535–537.CrossRefGoogle Scholar
  48. SHORECKI, K.L. & BRENNER, B.M. (1982). Body fluid homeostasis in congestive heart failure and cirrhosis with ascites. Amer. J. Med., 72, 323–328.CrossRefGoogle Scholar
  49. SOLARO, R.J. & RÜEGG, J.C. (1982). Stimulation of Ca2+ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ. Res., 51, 290–294.CrossRefGoogle Scholar
  50. STILES, G.L., CARON, M.G. & LEFKOWITZ, R.J. (1984). β-Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol. Rev., 64, 661–743.Google Scholar
  51. TSIEN, R.W. (1977). Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res., 8, 363–420.Google Scholar
  52. WEBER, K.T. & JANICKI, J.S. (1979). The heart as a muscle-pump system and the concept of heart failure. Amer. Heart J., 98, 371–384.CrossRefGoogle Scholar
  53. WILLIAMSON, J.R., SCHAFFER, S.W., FORD, C. & SAFER, B. (1976). Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation, 53, (Suppl.), 3–14.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • T. Godfraind
    • 1
  1. 1.Laboratoire de Pharmacodynamie Générale et de PharmacologieUniversité Catholique de Louvain, U.C.L. 7350BruxellesBelgium

Personalised recommendations