Skip to main content

The Structural Heterogeneity of Central Nervous Tissue

  • Chapter
Metabolic Compartmentation in the Brain

Abstract

Of all the tissues in the body, the nervous system possesses cells with the most extended form and the greatest range of size. In an animal like man, nerve cells can be from 20 or 30 μm to 2 m long. Their shapes can be just as various. In nearly all parts of the nervous system, neurons and parts of neurons of various dimensions and shapes are intertwined together in a tissue of extraordinary complexity and heterogeneity. This heterogeneity expresses two of the organizational principles of the nervous system. The first principle is the segregation of functions, which is evidenced, at least morphologically, by the appearance of white matter and grey matter, the clustering of the peri-karya of neurons having similar functional relations into nuclei, and the bundling of nerve fibres into tracts, commissures, and fasciculi; in short, by the whole apparatus of traditional neuroanatomy. This anatomical complexity is actually a consequence of a more fundamental principle inherent in the architecture of neurons, the segregation of functions within the cell. The second principle is expressed at a cellular level, by the enormous extent of the cell surface, the spatial separation of receptive, conducting, and transmitting portions of the cell, the almost complete restriction of protein synthesis to the perikaryon, and the differential distribution of intracellular organelles in the cytoplasm. The nerve cell itself is thus divided up into compartments, some of which have clear morphological boundaries set by quantitative differences in their contents or by membranous interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres, K. H. (1961). Z. Zeilforsch., 55, 1–48.

    Article  Google Scholar 

  • Billings, S. M., and Swartz, F. J. (1969). Z. Anat. Entwickl.-Gesch., 129, 14–23.

    Article  Google Scholar 

  • Bloom, F. E. (1970). Int. Rev. Biol., 13, 27–66.

    Google Scholar 

  • Brightman, M. W. (1967). In Prog. Brain Res., 29, Brain Barrier Systems, p. 19. Ed. by Lajtha, A., and Ford, D. H. Amsterdam: Elsevier.

    Google Scholar 

  • Brightman, M. W., and Reese, T. S. (1969). J. Cell Biol., 40, 648–77.

    Article  Google Scholar 

  • Chan-Palay, V., and Palay, S. L. (1971). Z. Anat. Entwickl.-Gesch., 133, 247–73.

    Article  Google Scholar 

  • Coggeshall, R. E., Yaksta, B. A., and Swartz, F. J. (1970). Chromosoma, 32, 205–12.

    Google Scholar 

  • Conradi, S. (1966). Acta Soc. Med. Upsal., 71, 281–4.

    Google Scholar 

  • Conradi, S. (1969). Acta Physiol. Scand., Suppl. 332, 65–84.

    Google Scholar 

  • Droz, B. (1965). C.R. Acad. Sci. Paris, 260, 320–2.

    Google Scholar 

  • Droz, B. (1967). J. Microscopie, 6, 201–28.

    Google Scholar 

  • Friend, D. S., and Farquhar, M. G. (1967). J. Cell Biol, 35, 357–76.

    Article  Google Scholar 

  • Gray, E. G. (1959). J. Anat., 93, 420–33.

    Google Scholar 

  • Gray, E. G., and Guillery, R. W. (1963). J. Anat., 97, 389–92.

    Google Scholar 

  • Herman, C. J., and Lapham, L. W. (1968). Science, 160, 537.

    Article  Google Scholar 

  • Holtzman, E., Novikoff, A. B. and Villaverde, H. (1967). J. Cell Biol, 33, 419–35.

    Article  Google Scholar 

  • Jamieson, J. D., and Palade, G. E. (1967a). J. Cell Biol, 34, 577–96.

    Article  Google Scholar 

  • Jamieson, J. D., and Palade, G. E. (1967b). J. Cell Biol, 34, 597–615.

    Article  Google Scholar 

  • Kaiserman-Abramof, I. R., and Palay, S. L. (1969). In Neurobiology of Cerebellar Evolution and Development, p. 171. Ed. by Llinás, R. Chicago: AMA-ERF Institute for Biomedical Research.

    Google Scholar 

  • Kohno, K. (1964). Bull. Tokyo Med. Dent. Univ., 11, 411–42.

    Google Scholar 

  • Lapham, L. W. (1968). Science, 159, 310–12.

    Article  Google Scholar 

  • Meldolesi, J., Jamieson, J. D., and Palade, G. E. (1971). J. Cell Biol., 49, 150–8.

    Article  Google Scholar 

  • Novikoff, A. B. (1967). In The Neuron, p. 255. Ed. by Hydén, H. Amsterdam: Elsevier.

    Google Scholar 

  • Orkand, R. K. (1969). In Basic Mechanisms of the Epilepsies, p. 737. Ed. by Jasper, H. H., Ward, A. A., and Pope, A. Boston: Little Brown.

    Google Scholar 

  • Palay, S. L. (1964). In Brain Function, 2, RNA and Brain Function; Memory and Learning, p. 69. Ed. by Brazier, M. A. B. University of California Press.

    Google Scholar 

  • Palay, S. L., Sotelo, C., Peters, A., and Orkand, P. M. (1968). J. Cell Biol., 38, 193–201.

    Article  Google Scholar 

  • Peters, A., and Kaiserman-Abramof, I. R. (1970). Amer. J. Anat., 127, 321–55.

    Article  Google Scholar 

  • Peters, A., Palay, S. L., and Webster, H. de F. (1970). The Fine Structure of the Nervous System. The Cells and their Processes. New York: Hoeber/Harper and Row.

    Google Scholar 

  • Peters, A., Proskauer, C. C., and Kaiserman-Abramof, I. R. (1968). J. Cell Biol, 39, 604–19.

    Article  Google Scholar 

  • Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., and Massey, J. F. (1967). In The Neuron, p. 119. Ed. by Hydén, H. Amsterdam: Elsevier.

    Google Scholar 

  • Reese, T. S., and Karnovsky, M. J. (1967). J. Cell Biol, 34, 207–17.

    Article  Google Scholar 

  • Rosenbluth, J. (1962). J. Cell Biol, 13, 405–21.

    Article  Google Scholar 

  • Sandritter, W., Nováková, V., Pilny, J., and Kiefer, G. (1967). Z. Zellforsch., 80, 145–52.

    Article  Google Scholar 

  • Sotelo, C. (1969). In Neurobiology of Cerebellar Evolution and Development, p. 327. Ed. by Llinás, R. Chicago: AMA-ERF Institute for Biomedical Research.

    Google Scholar 

  • Sotelo, C., and Palay, S. L. (1970). Brain Res., 18, 93–115.

    Article  Google Scholar 

  • Uchizono, K. (1969). In Neurobiology of Cerebellar Evolution and Development, p. 549. Ed. by Llinás, R. Chicago: AMA-ERF Institute for Biomedical Research.

    Google Scholar 

  • Wuerker, R. B., and Palay, S. L. (1969). Tissue and Cell, 1, 387–402.

    Article  Google Scholar 

  • Zelená, J. (1970). Brain Res., 24, 359–63.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1973 The Contributors

About this chapter

Cite this chapter

Palay, S.L., Chan-Palay, V. (1973). The Structural Heterogeneity of Central Nervous Tissue. In: Balázs, R., Cremer, J.E. (eds) Metabolic Compartmentation in the Brain. Palgrave, London. https://doi.org/10.1007/978-1-349-81567-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-81567-8_14

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-81569-2

  • Online ISBN: 978-1-349-81567-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics