Skip to main content

Decoupling and Methods of Adjustment

  • Chapter
Parametric Amplifiers

Part of the book series: Philips Technical Library

  • 23 Accesses

Abstract

In the theoretical study in Chapter 12 it was assumed that there was complete decoupling between the pump circuit and the output circuit. It was seen that this decoupling could not be obtained simply by filtering, and that a differential structure was required. It is proposed in this chapter to study the problems involved in the production of this decoupling, which will be referred to also as balancing of the bridge or of the input head. In principle only the output circuit having the filter tuned to ω p must be in common to the two branches of the differential structure. The relative position, in every branch and in the combination of the branches of the varactor, of the pump circuit and of the input filter (which can also be tuned to ω p ) determine ten principal variants to the base circuit of Fig. 12.3, every one having its dual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kennedy, D. P., ‘Semiconductor device evaluation’, in Advances in Electronics and Electron Physics, Academic Press.

    Google Scholar 

  2. Izumi, I. and Okano, M., ‘An improved solid-state logarithmic amplifier’, I.E.E.E. Trans, on Nuclear Science, July 1964.

    Google Scholar 

  3. San, C. T., Noyce, T. N. and Shockley, W., ‘Carrier generation and recombination in P-N junction and P-N junction characteristics’, Proc. I.R.E., vol. 45 (No. 5), p. 1228, September 1957.

    Google Scholar 

  4. Goulding, F. S., Lennox, C. G. and Robinson, L. B., ‘Analysis of the non-linear behaviour of semiconductor junctions and its application in nucleonics’, AECL-801, p. 77, April 1959.

    Google Scholar 

  5. Terman, L. M., ‘An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide silicon diodes’, in Solid-State Electronics, vol. 5, pp. 285–299, Pergamon Press, 1962.

    Google Scholar 

  6. Nicollian, E. H. and Goetzberger, A., ‘Laterial a.c. current flow model for metal insulator semiconductor capacitor’, I.E.E.E. Trans. on Electronic Devices, p. 108, March 1965.

    Google Scholar 

  7. Pfann, W. G. and Garret, C. G. S., ‘Semiconductor varactors using surface space-charge layers’, Proc. I.R.E., vol. 47, pp. 2011–2012, November 1959.

    Article  Google Scholar 

  8. Lindner, R., ‘Semiconductor surface varactor’, Bell System Technical Journal, vol. XLI (No. 3), May 1962.

    Google Scholar 

  9. Lindner, R., ‘M.O.S. diodes’, Electronics, 9 August 1963.

    Google Scholar 

  10. Brouwn, C. M. and MacFarland, H. T., ‘Low-frequency parametric amplifiers’, U.S. Government Research Report, AD 601378.

    Google Scholar 

  11. Biard, J. R., ‘Low-frequency reactance amplifier’, Proc. I.E.E.E., pp. 298–303, February 1963.

    Google Scholar 

  12. Schneider, B. and Strutt, M. J. O., ‘Theory and experiments on shot noise in silicon p-n junction diodes and transistors’, Proc. I.E.E.E., vol. 47, pp. 546–554, April 1959.

    Google Scholar 

  13. Sudland, K., ‘Transistorisierte neutronen FlußVerstärker’, Kerntechnik, vol. 6, pp. 17–19, 1964.

    Google Scholar 

  14. ‘Electrical resistance of insulating materials’, A.S.T.M. D257–61.

    Google Scholar 

  15. Schoninger, E. and Seidt, F., ‘Halbleiter-Bauelemente für hochempfindliche Gleichspannungsverstärker’, Siemens Zeitschrift, vol. 11, pp. 837–843, November 1964.

    Google Scholar 

  16. Keller, H., Lehmann, E. and Micle, L., ‘Diffundierte Silizium Kapazitatsdiode’, Radio Mentor, p. 661, August 1962.

    Google Scholar 

  17. Bourdel et al., ‘Caractéristiques des modules destinés aux ensembles de mesures pour le contrôle neutronique des piles automatiques’, Onde Électrique, No. 448–449, p. 74C.

    Google Scholar 

  18. Davis and Ezell, ‘Sub-audio parametric amplifier’, Electronics, pp. 28–31, 1 March 1963.

    Google Scholar 

  19. Izumi and Kokubu, ‘A transistorized high voltage regulator using a.c. control’, Electronic Engineering, August 1964.

    Google Scholar 

  20. El-Ibiary, M. Y., ‘Semiconductor logarithmic d.c. amplifier’, I.E.E.E. Trans, on Nuclear Science, April 1963.

    Google Scholar 

  21. ‘How to measure differential amplifier, common mode rejection’, E.E.E., vol. 12 (No. 7), July 1964.

    Google Scholar 

  22. ‘Varactors in voltage tuning application’, Microwave Journal International, p. 60, July 1964.

    Google Scholar 

  23. Josephs, H. C, ‘A d.c. reactance amplifier’, Proc. I.E.E.E., pp. 1669–1670, October 1965.

    Google Scholar 

  24. Goldberg, E. A., ‘Stabilization of wide-band direct-current amplifiers for zero and gain’, R.C.A. review, pp. 296–300, June 1950.

    Google Scholar 

  25. Cantraine, G., ‘Usages speciaux et calcul approfondi de circuits linéaires’, comportant un élément non dissipatif périodiquement variable.

    Google Scholar 

  26. Bulletin Scientifique, lère partie (No. 3), p. 217, 1964; A.I.M., 2ême partie (No. 1), p. 31, 1965.

    Google Scholar 

  27. Gustin, P. and Van Halle, M., ‘Representation analogique de phenomenes parametriques’, Rapport d’Études Université Catholique de Louvain, Faculté des Sciences Appliquées, 1963.

    Google Scholar 

  28. Van Reepinghen, ‘Bruit superpose et bruit de mode commun’, Evolution Electronique (No. 126), p. 47, July/August 1964.

    Google Scholar 

  29. Arlowe, D., ‘Electrical noise in instrumentation systems’, U.S. Office of Technical Services Report, TID 17749.

    Google Scholar 

  30. Hoge, R. R., ‘A sensitive parametric modulator for d.c. measurements’, I.R.E. International Convention Record, Pt. 9, pp. 34–42, 1960.

    Google Scholar 

  31. Hyde, F. J., ‘Varactor-diode parametric amplifiers’, Proc. I.E.E., vol. III (No. 6), June 1964.

    Google Scholar 

  32. De Bolt, H. E., ‘A high-sensitivity semiconductor diode modulator for d.c. current measurement’, I.R.E. Trans, on Nuclear Science, December 1960.

    Google Scholar 

  33. Loos, ‘ Een ingangsschakeling met zeer hoge ingangsweestand ‘, NA T-LAB Report, No. 113/61.

    Google Scholar 

  34. Danloux and Dumesnils, Calcul and logique par courants continus, Dunod.

    Google Scholar 

  35. Gorelik, C., ‘Phénomènes de résonance dans les systèmes linéaires et paramètres périodiques’, Tech. Phys. U.S.S.R., vol. 2, pp. 81–134, 1935.

    Google Scholar 

  36. Mandeltam, L., Papalexi, M., Andronov, A., Chaikin, S. and Witt, A., ‘Exposé de recherches récentes sur les oscillations non linéaires’, Tech. Phys. U.S.8.R., vol. 2, 1935.

    Google Scholar 

  37. Decroly, J. C, ‘Phénomènes d’Hystérèse dans les régimes oscillatoires d’un amplificateur paramétrique basse frequence’, Revue H.F., vol. 6, No. 8, 1965.

    Google Scholar 

Download references

Authors

Copyright information

© 1973 N.V. Philips’ Gloeilampenfabrieken, Eindhoven

About this chapter

Cite this chapter

Marechal, G. (1973). Decoupling and Methods of Adjustment. In: Parametric Amplifiers. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-81564-7_13

Download citation

Publish with us

Policies and ethics