Skip to main content

Summary

An experimental investigation is described which was carried out to study the behaviour of fully-clamped rectangular, square and triangular diaphragms when subjected to uniformly distributed transverse initial velocities. A machine for the forming of metal diaphragms under the action of pure inertia forces was used for the investigation. The range of kinetic energy imparted to the diaphragm, corresponding to initial velocities between 3.5 and 23.5 m/s in 5 stages, was sufficient to cause plastic flow and to secure maximum permanent polar deflections of from 6 to nearly 40 times the diaphragm thickness. Interesting features were observed regarding the hinge phenomenon and bending wave effects. Observations also included ‘curling’ of the free inner edges when testing diaphragms having central holes of corresponding shapes. The test equipment is briefly described and results are presented showing deformed diaphragms and illustrating how the profile, strain distribution, polar deflection and polar radius of curvature of the formed specimens varies with initial velocity. Results for inertially deformed diaphragms are also compared with those from the hydraulic bulging operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. E. Hudson (1951) A Theory of the Dynamic Plastic Deformation of a Thin Diaphragm, J. appl. Phys. 22, p.1.

    Article  Google Scholar 

  2. D. Fredrick (1959) A Simplified Analysis of Circular Membranes Subjected to an Impulsive Loading Producing Large Plastic Deformation, Proc. 4th Annual Conf. Solid Mech., Univ. Texas, Austin, p.18.

    Google Scholar 

  3. D. E. Boyd (1966) Dynamic Deformations of Circular Membranes, J.Eng.Mech. Div. ASCE 92, p.1.

    Google Scholar 

  4. A. J. Wang and H. G. Hopkins (1954) On the Plastic Deformation of Built-in Circular Plates under Impulsive Load, J.Mech. Phys. Solids 3, p.22.

    Article  Google Scholar 

  5. A. J. Wang (1955) The Permanent Deflection of a Plastic Plate under Blast Loading, J. appl. Mech. 22, p.375.

    Google Scholar 

  6. H. G. Hopkins and W. Prager (1954) On the Dynamics of Plastic Circular Plates, J. appl. Math. Phys. 5, p.317

    Article  Google Scholar 

  7. N. Jones (1968) Impulsive Loading of a Simply Supported Circular Rigid Plastic Plate, J.appl.Mech. 27, p.59

    Article  Google Scholar 

  8. T. Wierzbicki (1969) Large Deflection of a Strain Rate Sensitive Plate Loaded Impulsively, Archum Mech. Stosow, 21, p.67

    Google Scholar 

  9. E. A. Witmer et al (1963) Large Dynamic Deformations of Beams, Circular Rings, Circular Plates and Shells, AIAA J. 1, p.1848

    Article  Google Scholar 

  10. R. C. Batra and R. N. Dubey (1971) Impulsively Loaded Circular Plates, Int. J. Solids Struct. 7, p.965

    Article  Google Scholar 

  11. N. Cristescu (1967) Dynamic Plasticity, North Holland Publishing Co., Amsterdam.

    Google Scholar 

  12. W. Johnson (1972) Impact Strength of Materials, Arnold, London.

    Google Scholar 

  13. A. D. Cox and L. W. Morland (1959) Dynamic Plastic Deformation of Simply-Supported Square Plates, J.Mech.Phys. Solids, 7, p.229.

    Article  Google Scholar 

  14. M. R. Sewailem and T. Z. Blazynski (1968) Underwater Explosive Forming of Rectangular Metal Sheet, Proc. 8th Int. Mach. Tool pes. Res. Conf., Manchester 1967, p.1301, Pergamon, Oxford.

    Google Scholar 

  15. T. Z. Blazynski (1973) A Theoretical and Experimental Approach to the Basic Problem of Underwater Explosive Forming of Thin Rectangular Metal Sheet, Arch. Budowy Maszyn XX(1), p.3.

    Google Scholar 

  16. J. L. Duncan (1968) Non-Symmetric Sheet Metal Forming Processes, Ph.D Thesis, UMIST.

    Google Scholar 

  17. J. L. Duncan and W. Johnson (1967) The Ultimate Strength of Rectangular Diaphragms, Int. J. Mech. Sci. 9, p.681.

    Article  Google Scholar 

  18. J. L. Duncan and W. Johnson (1968) The Ultimate Strength of Rectangular Anisotropic Diaphragms, ibid. 10, p.143.

    Google Scholar 

  19. J. L. Duncan and W. Johnson (1968) Plastic Deformation and Failure of Square Diaphragms, ibid. 10, p.157.

    Google Scholar 

  20. N. Jones et al (1970) The Dynamic Plastic Behaviour of Fully Clamped Rectangular Plates, Int. J. Solids Struct. 6, p.1499

    Article  Google Scholar 

  21. N. Jones (1971) An Experimental Study into the Dynamic Plastic Behaviour of Wide Beams and Rectangular Plates, Int. J. Mech. Sci. 13, p.721.

    Article  Google Scholar 

  22. C. A. Ross and W. S. Strickland (1974/75) Response of Flat Plates Subjected to Mild Impulsive Loadings, Proc. 45th Symp. Shock and Vibration, Dayton, Ohio, Oct. 22–25, p.105.

    Google Scholar 

  23. R. O. Meitz and P. B. Aitken-Cade (1974/75) Predicting Plate Response to Blast Loading, ibid, p.143.

    Google Scholar 

  24. F. J. Kay and G. D. Whitehouse (1971) The Plastic Deformation of Clamped Rectangular Membranes Subjected to Impulsive Type Loading, Proc. IASS Symp., Honolulu, Hawaii, p.766.

    Google Scholar 

  25. S. T. S. Al-Hassani et al (1972) Fracture of Triangular Plates due to Contact Explosive Pressure, J.Mech.Eng.Sci. 14, p.173.

    Article  Google Scholar 

  26. S. K. Ghosh et al (1977) Inertial Forming of Circular and Annular Diaphragms, Proc. l8th Int. Mach. Tool Pes. Res. Conf., London, Paper 173.

    Google Scholar 

  27. W. Johnson and P. B. Mellor (1973) Engineering Plasticity, Van Nostrand Rheinhold, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1979 Department of Mechanical Engineering, University of Manchester Institute of Science and Technology

About this chapter

Cite this chapter

Ghosh, S.K., Travis, F.W. (1979). Experiments Into the Inertial Deformation of Clamped Rectangular, Square and Triangular Diaphragms. In: Davies, B.J. (eds) Proceedings of the Nineteenth International Machine Tool Design and Research Conference. Palgrave, London. https://doi.org/10.1007/978-1-349-81412-1_29

Download citation

Publish with us

Policies and ethics