Tests of mechanical function

  • G. J. Gibson


Leonardo da Vinci compared the lungs to a bellows, which is inflated and deflated as air is pumped in and out. Expansion of the lungs is normally achieved by the inspiratory muscles reducing the pressure over the pleural surface of the lungs and ‘sucking’ them out, but equally the lungs can be inflated like a balloon by blowing air into the airway, i.e. by positive pressure ventilation. The mechanical performance of the ‘bellows’ underlies some of the simplest and most useful tests of lung function. If the bellows is abnormally stiff (reduced lung compliance), or the tube by which it empties is abnormally narrow (increased airways resistance), ventilation becomes more difficult.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilbert, R., Auchincloss, J. H. and Brodsky, J. Changes in tidal volume, frequency and ventilation induced by their measurement. J. Appl. Physiol. 1972; 33: 252–4.Google Scholar
  2. 2.
    Konno, K. and Mead, J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J. Appl. Physiol. 1967; 22: 407–22.Google Scholar
  3. 3.
    Cohn, M. A., Watson, H., Weisshaut, R. et al. A transducer for non-invasive monitoring of respiration. In: Stott, F. D., Raftery, E. B., Sleight, P. and Goulding, L. (eds), Proceedings of the Second International Symposium on Ambulatory Monitoring, London: Academic Press, 1978: 119–28.Google Scholar
  4. 4.
    Stagg, D., Goldman, M. and Newsom Davis, J. Computer-aided measurement of breath volume and time components using magnetometers. J. Appl. Physiol. 1978; 44: 623–33.Google Scholar
  5. 5.
    Rahn, H., Otis, A. B., Chadwick, L. E. and Fenn, W. O. The pressure-volume diagram of the thorax and lung. Am. J. Physiol. 1946; 146: 161–78.Google Scholar
  6. 6.
    Milic Emili, J., Mead, J., Turner, J. M. and Glauser, E. M. Improved technique for estimating pleural pressure from oesophageal balloons. J. Appl. Physiol. 1964; 19: 207–11.Google Scholar
  7. 7.
    Zapletal, A., Paul, T. and Samanek, M. Pulmonary elasticity in children and adolescents. J. Appl. Physiol. 1976; 40: 953–61.Google Scholar
  8. 8.
    Mead, J. and Gaensler, E. A. Oesophageal and pleural pressure in man, upright and supine. J. Appl. Physiol. 1959; 14: 81–3.Google Scholar
  9. 9.
    Knowles, J. H., Hong, S. K. and Rahn, H. Possible errors using oesophageal balloons in determination of pressure-volume characteristics of the lung and thoracic cage. J. Appl. Physiol. 1959; 14: 525–30.Google Scholar
  10. 10.
    Ingram, R. H., O’Cain, C. F. and Fridy, W. W. Simultaneous quasi-static lung pressure-volume curves and ‘closing volume’ measurements. J. Appl. Physiol. 1974; 36: 135–41.Google Scholar
  11. 11.
    Turner, J. M., Mead, J. and Wohl, M. E. Elasticity of human lungs in relation to age. J. Appl. Physiol. 1968; 25: 664–71.Google Scholar
  12. 12.
    Yernault, J. C, Baran, D. and Englert, M. Effect of growth and aging on the static mechanical lung properties. Bull. Europ. Physiopathol. Resp. 1977; 13: 777–88.Google Scholar
  13. 13.
    Knudson, R. J., Clark, D. F., Kennedy, T. C. and Knudson, D. E. Effect of aging alone on mechanical properties of the normal adult human lung. J. Appl. Physiol. 1977; 43: 1054–62.Google Scholar
  14. 14.
    Gibson, G. J., Pride, N. B., Davis, J. and Schroter, R. C. Exponential description of the static pressure-volume curve of normal and diseased lungs. Am. Rev. Respir. Dis. 1979; 120: 799–811.Google Scholar
  15. 15.
    Campbell, E. J. M. The Respiratory Muscles 1st edn, London: Lloyd-Luke, 1958.Google Scholar
  16. 16.
    Woolcock, A. J., Vincent, N. J. and Macklem, P. T. Frequency dependence of compliance as a test for obstruction in the small airways. J. Clin. Invest. 1969; 48: 1097–1106.CrossRefGoogle Scholar
  17. 17.
    Meneely, G. R. and Kaltreider, N. L. The volume of the lung determined by helium dilution. J. Clin. Invest. 1949; 28: 129–39.CrossRefGoogle Scholar
  18. 18.
    Ferris, B. Epidemiology standardization project: III Recommended standardized procedures for pulmonary function testing. Am. Rev. Respir. Dis. 1978; suppl: 78–9.Google Scholar
  19. 19.
    DuBois, A. B., Botelho, S. Y., Bedell, G. N. et al. A rapid Plethysmographic method for measuring thoracic gas volume. J. Clin. Invest. 1956; 35: 322–6.CrossRefGoogle Scholar
  20. 20.
    Habib, M. P., and Engel, L. A. Influence of the panting technique on the measurement of thoracic gas volume. Am. Rev. Respir. Dis. 1978; 117: 265–71.Google Scholar
  21. 21.
    Stanescu, D. C, Rodenstein, D., Cauberghs, M. and van de Woestijne, K. P. Failure of body plethysmography in bronchial asthma. J. Appl. Physiol. 1982; 52: 939–48.Google Scholar
  22. 22.
    Rodenstein, D. O. and Stanescu, D. C. Reassessment of lung volume measurement by helium dilution and by body plethysmography in chronic airflow obstruction. Am. Rev. Respir. Dis. 1982; 126: 1040–4.Google Scholar
  23. 23.
    Barnhard, H. J., Pierce, J. A., Joyce, J. W. and Bates, J. H. Roentgenographic determination of total lung capacity. Am. J. Med. 1960; 28: 51–60.CrossRefGoogle Scholar
  24. 24.
    Pierce, R. J., Brown, D. J., Holmes, M. et al. Estimation of lung volumes from chest radiographs using shape information. Thorax 1979; 34: 726–34.CrossRefGoogle Scholar
  25. 25.
    Mead, J. Functional significance of the area of apposition of diaphragm to rib cage. Am. Rev. Respir. Dis. 1979; 119, no. 2 part 2 suppl.: 31–2.Google Scholar
  26. 26.
    Heaf, P. J. D. and Prime, F.J. The compliance of the thorax in normal human subjects. Clin. Sci. 1956; 15: 319–27.Google Scholar
  27. 27.
    Agostoni, E. Statics. In: Campbell, E. J. M., Agostoni, E. and Newsom Davis, J. (eds), The Respiratory Muscles 2nd edn, London: Lloyd-Luke, 1970: 48–79.Google Scholar
  28. 28.
    Goldman, M. D. and Mead, J. Mechanical interaction between the diaphragm and rib cage. J. Appl. Physiol. 1973; 35: 197–204.Google Scholar
  29. 29.
    Rohrer, F. Der Zusammenhang der Atemkräfte und ihre Abhängigkeit vom Dehnungszustand der Atmungsorgane. Pflügers Arch. ges. Physiol. 1916; 165: 419–44.CrossRefGoogle Scholar
  30. 30.
    Agostoni, E. and Rahn, H. Abdominal and thoracic pressures at different lung volumes. J. Appl. Physiol. 1960; 15: 1087–92.Google Scholar
  31. 31.
    Gibson, G. J., Clark, E. and Pride, N. B. Static transdiaphragmatic pressures in normal subjects and in patients with chronic hyperinflation. Am. Rev. Respir. Dis. 1981; 124: 685–9.Google Scholar
  32. 32.
    Richardson, J. and Beland, J. Nonadrenergic inhibitory nervous system in human airways. J. Appl. Physiol. 1976; 41: 764–71.Google Scholar
  33. 33.
    Tattersfield, A. E., Leaver, D. G. and Pride, N. B. Effects of β-adrenergic blockade and stimulation on normal human airways. J. Appl. Physiol. 1973; 35: 613–19.Google Scholar
  34. 34.
    Nadel, J. A. and Tierney, D. F. Effect of a previous deep inspiration on airway resistance in man. J. Appl. Physiol. 1961; 16: 717–19.Google Scholar
  35. 35.
    Mead, J. and Whittenberger, J. L. Physical properties of human lungs measured during spontaneous respiration. J. Appl. Physiol. 1953; 5: 779–96.Google Scholar
  36. 36.
    Clements, J. A., Sharp, J. T., Johnson, R. P. and Elam, J. O. Estimation of pulmonary resistance by repetitive interruption of airflow. J. Clin. Invest. 1959; 38: 1262–70.CrossRefGoogle Scholar
  37. 37.
    DuBois, A. B., Botelho, S. Y. and Comroe, J. H. A new method for measuring airway resistance in man using a body Plethysmograph. J. Clin. Invest. 1956; 35: 327–32.CrossRefGoogle Scholar
  38. 38.
    Stanescu, D. C., Pattijn, J., Clément, J. and van de Woestijne, K. P. Glottis opening and airway resistance. J. Appl. Physiol. 1972; 32: 460–6.Google Scholar
  39. 39.
    Higenbottam, T. and Payne, J. Glottis narrowing in lung disease. Am. Rev. Respir. Dis. 1982; 125: 746–50.Google Scholar
  40. 40.
    Goldman, M., Knudson, R. J. and Mead, J. A simplified measurement of respiratory resistance by forced oscillation. J. Appl. Physiol. 1970; 28: 113–6.Google Scholar
  41. 41.
    Fry, D. L. and Hyatt, R. E. Pulmonary mechanics: a unified analysis of the relationship between pressure, volume and gas flow in the lungs of normal and diseased subjects. Am. J. Med. 1960; 29: 672–89.CrossRefGoogle Scholar
  42. 42.
    Mead, J., Turner, J. M., Macklem, P. T. and Little, J. B. Significance of the relationship between lung recoil and maximum expiratory flow. J. Appl. Physiol. 1967;22: 95–108.Google Scholar
  43. 43.
    Pride, N. B., Permutt, S., Riley, R. L. and Bromberger-Barnea, B. Determinants of maximal expiratory flow from the lungs. J. Appl. Physiol. 1967; 23: 646–62.Google Scholar
  44. 44.
    Dawson, S.V. and Elliott, E. Wave-speed limitation on expiratory flow — a unifying concept. J. Appl. Physiol. 1977; 43: 498–515.Google Scholar
  45. 45.
    Hyatt, R. E., Wilson, T. A. and Bar-Yishay, E. Prediction of maximal expiratory flow in excised human lungs. J. Appl. Physiol. 1980; 48: 991–8.Google Scholar
  46. 46.
    Bass, H. The flow volume loop: normal standards and abnormalities in chronic obstructive pulmonary disease. Chest 1973; 63: 171–6.CrossRefGoogle Scholar
  47. 47.
    Cherniack, R. M. and Raber, M. B. Normal standards for ventilatory function using an automated wedge spirometer. Am. Rev. Respir. Dis. 1972; 106: 38–46.CrossRefGoogle Scholar
  48. 48.
    Ingram, R. H. and Schilder, D. P. Effect of gas compression on pulmonary pressure, flow and volume relationship. J. Appl. Physiol. 1966; 21: 1821–6.Google Scholar
  49. 49.
    Tiffeneau, R. and Pinelli, A. Air circulant et air captif dans l’exploration de la fonction ventilatrice pulmonaire. Paris Méd. 1947; 133: 624–8.Google Scholar
  50. 50.
    Gaensler, E. A. Analysis of the ventilatory defect by timed capacity measurements. Am. Rev. Tub. 1951; 64: 256–78.Google Scholar
  51. 51.
    Hutchinson, J. On the capacity of the lungs, and on the respiratory functions, with a view to establishing a precise and easy method of detecting disease by the spirometer. Med. Chir. Trans. 1846; 29: 137–252.CrossRefGoogle Scholar
  52. 52.
    Gilson, J. C. and Hugh Jones, P. The measurement of the total lung volume and breathing capacity. Clin. Sci. 1949; 7: 185–216.Google Scholar
  53. 53.
    Leuallen, E. C. and Fowler, W. S. Maximal midexpiratory flow. Am. Rev. Tub. 1955; 72: 783–800.Google Scholar
  54. 54.
    Kuperman, A. S. and Riker, J. B. The predicted normal maximal midexpiratory flow. Am. Rev. Respir. Dis. 1973; 107: 231–8.Google Scholar
  55. 55.
    Permutt, S. and Menkes, H. A. Spirometry: analysis of forced expiration within the time domain. In: Macklem, P. and Permutt, S. (eds), The Lung in Transition between Health and Disease (Lung Biology in Health and Disease, vol. 12), New York: Marcel Dekker, 1979: chapter 6.Google Scholar
  56. 56.
    Pride, N. B. Analysis of forced expiration — a return to the recording spirometer? Thorax 1979; 34: 144–7.CrossRefGoogle Scholar
  57. 57.
    Guyatt, A. R. and Alpers, J. H. Factors affecting airways conductance: a study of 752 working men. J. Appl. Physiol. 1968; 24: 310–6.Google Scholar
  58. 58.
    Bouhuys, A., Hunt, V. R., Kim, B. M. and Zapletal, A. Maximum expiratory flow rates in induced bronchoconstriction in man. J. Clin. Invest. 1969; 48: 1159–68.CrossRefGoogle Scholar
  59. 59.
    Baldwin, E. de F., Cournand, A. and Richards, D. W. Pulmonary insufficiency I Physiological classification, clinical methods of analysis, standard values in normal subjects. Medicine (Baltimore) 1948; 27: 243–78.Google Scholar
  60. 60.
    Cockcroft, D. W. and Berscheid, B. A. Volume adjustment of maximal mid-expiratory flow. Chest 1980; 78: 595–600.CrossRefGoogle Scholar

Copyright information

© G. J. Gibson 1984

Authors and Affiliations

  • G. J. Gibson
    • 1
  1. 1.Freeman HospitalNewcastle upon TyneUK

Personalised recommendations