The Axonemes of Cilia and Flagella

  • Linda A. Amos
  • W. Bradshaw Amos
Part of the Macmillan Molecular Biology Series book series


An axoneme is the specialised bundle of microtubules found within the membrane of a eukaryotic flagellum or cilium, organelles which are distinguished from one another really only on the basis of details of their modes of beating. Axonemes and basal bodies which are closely related in structure, are found throughout the animal kingdom, in algae, protists, fungi and primitive plants such as ferns. The bundles are highly ordered and very stable in comparison with microtubules in general. There are many other motile organdies consisting of bundles of stable microtubules in different arrangements, found in numerous invertebrate species. There are also variations on the usual ‘9 + 2’ arrangement (shown for a sperm tail in Figure 1.13) throughout the animal kingdom. However, the ‘9 + 2’ axoneme seems to have been selected during evolution as the optimum, geared for maximum efficiency. It is to microtubules what a striated muscle is to actin: a powerful machine in which efficiency is maximised, at the expense of flexibility in the redeployment of the components.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading


  1. 1.
    Gibbons, I. R. (1981). Cilia and flagella of eukaryotes. In J. Cell Biol. 91 (Discovery in Cell Biology), 107–124. (An excellent but rather detailed review of ‘9 + 2’ flagellum work, with an accent on the history of the subject.)PubMedCentralCrossRefGoogle Scholar
  2. 2.
    Warner, F. D. (1972). Macromolecular organization of eukaryotic cilia and flagella. Adv. Cell & Mol. Biol. 2, 193–235. (A fairly old review of the overall structure of axonemes: still relevant, except for fine details of some molecular structure.)Google Scholar
  3. 3.
    Satir, P. (1974). How cilia move. Sci. Am. 231 (4), 44–63.PubMedGoogle Scholar
  4. 4.
    Goodenough, U. W. & Heuser, J. E. (1985). Outer and inner arms of cilia and flagella. Cell 41, 341–342. (A good short review.)CrossRefPubMedGoogle Scholar
  5. 5.
    Amos, W. B. & Duckett, J. G., eds (1982). Prokaryotic and Eukaryotic Flagella. Society for Experimental Biology, Symp. No. 35.Google Scholar
  6. 6.
    Dutcher, S. K. & Lux, F. G. (1989). Genetic interactions affecting flagella and basal bodies in Chlamydomonas. Cell Motil. & Cytoskel. 14, 104–117.CrossRefGoogle Scholar
  7. 7.
    Huang, B. (1986). Chlamydomonas reinhardtii: a model system for the genetic analysis of flagellar structure and motility. Int. Rev. Cytol. 99, 181–216.CrossRefGoogle Scholar
  8. 8.
    Luck, D. J. L. (1984). Genetic and biochemical dissection of the eucaryotic flagellum. J. Cell Biol. 98, 789–794.CrossRefPubMedGoogle Scholar
  9. 9.
    Lefebvre, P. A. & Rosenbaum, J. L. (1986). Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu. Rev. Cell Biol. 2, 517–546.CrossRefPubMedGoogle Scholar
  10. 10.
    Goodenough, U. W. (1989). Basal body chromosomes? Cell 59, 1–3.CrossRefPubMedGoogle Scholar

Original papers

  1. 11.
    Summers, K. E. & Gibbons, I. R. (1971). ATP-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm. Proc. Natl. Acad. Sci., USA 68, 3092–3096.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 12.
    Warner, F. D. & Mitchell, D. R. (1978). Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J. Cell Biol. 76, 261–277.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 13.
    Sale, W. S. & Satir, P. (1977). Direction of active sliding of microtubules in Tetrahymena cilia. Proc. Natl. Acad. Sci., USA 74, 2045–2049.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 14.
    Warner, F. D. & Satir, P. (1974). The structural basis of ciliary bend formation. J. Cell Biol. 63, 35–63.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 15.
    Brokaw, C. J. & Johnson, K. A. (1989). Dynein-induced microtubule sliding and force generation. In Cell Movement, vol. 1, ed. Warner, F. D., Satir, P. & Gibbons, I., pp. 191–198. New York: Alan R. Liss.Google Scholar
  6. 16.
    Brokaw, C. J. (1989). Operation and regulation of the flagellar oscillator. In Cell Movement, vol. 1, ed. Warner, F. D., Satir, P. & Gibbons, I., pp. 267–279. New York: Alan R. Liss.Google Scholar
  7. 17.
    Warner, F. D. (1970). New observations on flagellar fine structure. J. Cell Biol. 47, 159–182. (An alternative to reference 2 above.)PubMedCentralCrossRefPubMedGoogle Scholar
  8. 18.
    Hopkins, J. M. (1970). Subsidiary components of the flagella of Chlamydomonas reinhardtii. J. Cell Sci. 7, 823–839.Google Scholar
  9. 19.
    Goodenough, U. V. & Heuser, J. E. (1985). Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J. Cell Biol. 100, 2008–2018.CrossRefPubMedGoogle Scholar
  10. 20.
    Linck, R. W., Amos, L. A. & Amos, W. B. (1985). Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J. Cell Biol. 100, 126–135.CrossRefPubMedGoogle Scholar
  11. 21.
    Cavalier-Smith, T. (1974). Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardtii. J. Cell Sci. 16, 529–556.Google Scholar
  12. 22.
    Gould, R. R. (1975). The basal bodies of Chlamydomonas reinhardtii: formation from probasal bodies, isolation and partial characterization. J. Cell Biol. 65, 65–74.CrossRefPubMedGoogle Scholar
  13. 23.
    Miki-Noumura, T. (1977). Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchin. J. Cell Sci. 24, 203–216.PubMedGoogle Scholar
  14. 24.
    Dentler, W. L. & Rosenbaum, J. L. (1977). Flagellar elongation and shortening in Chlamydomonas. III: Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J. Cell Biol. 74, 747–759.CrossRefPubMedGoogle Scholar
  15. 25.
    Linck, R. W. & Langevin, G. L. (1981). Reassembly of flagellar B () tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J. Cell Biol. 89, 323–337.CrossRefPubMedGoogle Scholar
  16. 26.
    Linck, R. W., Olson, G. E. & Langevin, G. L. (1981). Arrangement of tubulin subunits and microtubule-associated proteins in the central pair microtubule apparatus of squid (Loligo pealei) sperm flagella. J. Cell Biol. 89, 309–322.CrossRefPubMedGoogle Scholar
  17. 27.
    Goodenough, U. W. & Heuser, J. E. (1984). Structural comparison of purified proteins with in situ dynein arms. J. Mol. Biol. 180, 1083–1118.CrossRefPubMedGoogle Scholar
  18. 28.
    Sale, W. S., Goodenough, U. W. & Heuser, J. E. (1985). The substructure of isolated and in situ dynein arms of sea urchin sperm flagella. J. Cell Biol. 101, 1400–1412.CrossRefPubMedGoogle Scholar
  19. 29.
    Goodenough, U. W. & Heuser, J. E. (1989). Structure of the soluble and in situ ciliary dyneins visualized by quick-freeze, deep-etch microscopy. In Cell Movement, vol. 1, ed. Warner, F. D., Satir, P. & Gibbons, I., pp. 121–140. New York: Alan R. Liss.Google Scholar
  20. 30.
    Stephens, R. E., Oleszko-Sluts, S. & Linck, R. W. (1989). Retention of ciliary ninefold structure after removal of microtubules. J. Cell Sci. 92, 392–402.Google Scholar
  21. 31.
    Stephens, R. E. (1989). Quantal tektin synthesis and ciliary length in sea urchin embryos. J. Cell Sci. 92, 403–413.PubMedGoogle Scholar
  22. 32.
    Amos, W. B., Amos, L. A. & Linck, R. W. (1986). Studies of tektin filaments from flagellar microtubules by immunoelectron microscopy. J. Cell Sci. Suppl. 5, 55–68.CrossRefPubMedGoogle Scholar
  23. 33.
    Calladine, C. R. (1978). Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol. 118, 457–479.CrossRefGoogle Scholar
  24. 34.
    Okagaki, T. & Kamiya, R. (1986). Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms. J. Cell Biol. 103, 1895–1902.CrossRefPubMedGoogle Scholar
  25. 35.
    Kamiya, R. (1982). Extrusion and rotation of the central pair microtubules in detergent-treated Chlamydomonas flagella. Cell Motil., Suppl. 1, 169–173.CrossRefGoogle Scholar
  26. 36.
    Linck, R. W. (1989). Tektins and Microtubules. Advances in Cell Biology, vol. 3, pp. 35–63, ed. Miller, K. R. Greenwich, Connecticut: JAI Press.Google Scholar
  27. 37.
    Tash, J. S. (1989). Protein phosphorylation: the second messenger signal transducer of flagellar motility. Cell Motil & Cytoskel. 14, 332–339.CrossRefGoogle Scholar

Copyright information

© L. A. Amos and W. B. Amos 1991

Authors and Affiliations

  • Linda A. Amos
    • 1
  • W. Bradshaw Amos
    • 1
  1. 1.Laboratory of Molecular BiologyMedical Research CouncilCambridgeUK

Personalised recommendations