Skip to main content

Proteins Associated with Microtubules

  • Chapter
Molecules of the Cytoskeleton

Abstract

There are probably as many proteins involved in controlling the assembly, disassembly and interactions of microtubules in cells as there are for actin. But fewer have been studied in great detail and it is possible that some major categories remain to be discovered. In addition to the structural components described below, a number of minor enzymatic components are known to copurify with tubulin. These include a transphosphorylase that can convert bound GDP back to GTP, an enzyme that specifically removes tyrosine from the C-terminus of α-tubulin monomers, and another that can replace this terminal residue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

Reviews: MAPs

  1. Olmsted, J. B. (1986). Microtubule-associated proteins. Annu. Rev. Cell Biol. 2, 421–457. (Comprehensive up to 1986.)

    Article  CAS  PubMed  Google Scholar 

  2. Vallee, R. B., Bloom, G. S. & Theurkauf, W. E. (1984). Microtubule-associated proteins: subunits of the cytomatrix. J. Cell Biol. 99, 38s-44s. (Less comprehensive, more readable.)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Matus, A. (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu. Rev. Neurosci. 11, 29–44.

    Article  CAS  PubMed  Google Scholar 

  4. Matus, A. (1990). Microtubule-associated proteins. Curr. Opinion Cell Biol. 2, 10–14.

    Article  Google Scholar 

  5. Wiche, G. (1985). High-molecular-weight microtubule-associated proteins: a ubiquitous family of cytoskeletal connecting links. Trends Biochem. Sci. 10, 67–70.

    Article  CAS  Google Scholar 

Reviews: motors

  1. Gelfand, V. I. (1989). Cytoplasmic microtubular motors. Curr. Opinion Cell Biol. 1, 63–66.

    Article  CAS  PubMed  Google Scholar 

  2. Vale, R. D. (1990). Microtubule-based motor proteins. Curr. Opinion Cell Biol. 2, 15–22.

    Article  CAS  PubMed  Google Scholar 

  3. McIntosh, J. R. & Porter, M. E. (1989). Enzymes for microtubule-dependent motility. J. Biol. Chem. 264, 6001–6004.

    CAS  PubMed  Google Scholar 

  4. McIntosh, J. R., Satir, P., Gibbons, I. R. & Warner, F. D. (1988). Force production and microtubule-coupled cell movement. Cell Motil. & Cytoskel. 11, 182–186. (Conference summarised by organising committee. See also the two-volume book of the conference, `Cell Movement’: vol. 1, ed. Warner, F. D., Satir, P. & Gibbons, I.; vol. 2, ed. Warner, F. D. & McIntosh, J. R. New York: Alan R. Liss.)

    Article  Google Scholar 

  5. Gibbons, I. R. (1988). Dynein ATPases as microtubule motors. J. Biol. Chem. 263, 15 837–15 840. (A compact review of dynein biochemistry.)

    CAS  Google Scholar 

  6. Schliwa, M. (1989). Head and tail. Cell 56, 719–720. (A minireview of kinesin discoveries.)

    Article  CAS  PubMed  Google Scholar 

  7. Vale, R. D. (1987). Intracellular transport using microtubule-based motors. Annu. Rev. Cell Biol. 3, 347–378.

    Article  CAS  PubMed  Google Scholar 

  8. Porter, M. E. & Johnson, K. A. (1989). Dynein structure and function. Annu. Rev. Cell Biol. 5, 119–152.

    Article  CAS  PubMed  Google Scholar 

  9. Vale, R. D., Scholey, J. M. & Sheetz, M. P. (1986). Biological roles for a new microtubule-based motor. Trends Biochem. Sci. 11, 464–468.

    Article  CAS  Google Scholar 

Original papers for further reference

  1. Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H. & Simpson, M. (1985). Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J. Cell Biol. 100, 1736–1752.

    Article  CAS  PubMed  Google Scholar 

  2. Vale, R. D. & Toyoshima, Y. Y. (1988). Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459–469.

    Article  CAS  PubMed  Google Scholar 

  3. Sale, W. S. & Fox, L. A. (1988). Isolated ß-heavy chain subunit of dynein translocates microtubules in vitro. J. Cell Biol. 107, 1793–1797.

    Article  CAS  PubMed  Google Scholar 

  4. Porter, M. E., Grissom, P. M., Scholey, J. M., Salmon, E. D. & McIntosh, J. R. (1988). Dynein isoforms in sea urchin eggs. J. Biol. Chem. 263, 6759–6771.

    CAS  PubMed  Google Scholar 

  5. Goodenough, U. W., Gebhart, B., Mermall, V., Mitchell, D. R. & Heuser, J. E. (1987). High-pressure liquid chromatography fractionation of Chlamy- domonas dynein extracts and characterization of inner-arm dynein subunits. J. Mol. Biol. 194, 481–494.

    Article  CAS  PubMed  Google Scholar 

  6. Goodenough, U. W. & Heuser, J. E. (1989). Structure of the soluble and in situ ciliary dyneins visualized by quick-freeze deep-etch microscopy. In Cell Movement, vol. 1, ed. Warner, F. D., Satir, P. & Gibbons, I. pp. 121–140. New York: Alan R. Liss.

    Google Scholar 

  7. Toyoshima, Y. Y. (1987). Chymotryptic digestion of Tetrahymena ciliary dynein. I: Decomposition of three-headed 22 S dynein to one- and two-headed particles. J. Cell Biol. 105, 887–895.

    Article  CAS  PubMed  Google Scholar 

  8. Haimo, L. T. & Fenton, R. D. (1988). Interaction of Chlamydomonas dynein with tubulin. Cell Motil. & Cytoskel. 9, 129–139.

    Article  CAS  Google Scholar 

  9. Porter, M. E. & Johnson, K. A. (1983). Characterization of the ATP-sensitive binding of Tetrahymena 30 S dynein to bovine brain microtubules. J. Biol. Chem. 258, 6575–6581.

    CAS  PubMed  Google Scholar 

  10. Pascal, B. M., Shpetner, H. S. & Vallee, R. B. (1987). MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol. 105, 1273–1282.

    Article  Google Scholar 

  11. Amos, L. A. (1989). Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28.

    CAS  PubMed  Google Scholar 

  12. Do, C. V., Sears, E. B., Gilbert, S. P. & Sloboda, R. D. (1988). Vesikin, a vesicle associated ATPase from squid axoplasm and optic lobe, has characteristics in common with vertebrate brain MAP 1 and MAP 2. Cell Motil. & Cytoskel. 10, 246–254.

    Article  CAS  Google Scholar 

  13. Euteneuer, U., Koonce, M. P., Pfister, K. K. & Schliwa, M. (1988). An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa. Nature 332, 176–178.

    Article  CAS  PubMed  Google Scholar 

  14. Lye, R. J., Porter, M. E., Scholey, J. M. & McIntosh, J. R. (1987). Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans. Cell 51, 309–318.

    Article  CAS  PubMed  Google Scholar 

  15. Gelles, J., Schnapp, B. J. & Sheetz, M. P. (1988). Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453.

    Article  CAS  PubMed  Google Scholar 

  16. Cohn, S. A., Ingold, A. L. & Scholey, J. M. (1987). Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature 328, 160–163.

    Article  CAS  PubMed  Google Scholar 

  17. Amos, L. A. (1987). Kinesin from pig brain studied by electron microscopy. J. Cell Sci. 87, 105–111.

    CAS  PubMed  Google Scholar 

  18. Hisanaga, S., Murofushi, H., Okuhara, K., Sato, R., Sakai, H. & Hirokawa, N. (1989). The molecular structure of adrenal medulla kinesin. Cell Motil. & Cytoskel. 12, 264–272.

    Article  CAS  Google Scholar 

  19. Kuznetsov, S. A. & Gelfand, V. I. (1986). Bovine brain kinesin is a microtubule-activated ATPase. Proc. Natl. Acad. Sci., USA 83, 8530–8534.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. (1989). A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879–889.

    Article  CAS  PubMed  Google Scholar 

  21. Hirokawa, N., Pfister, K. K., Yorifuji, H., Wagner, M. C., Brady, S. T. & Bloom, G. S. (1989). Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878.

    Article  CAS  PubMed  Google Scholar 

  22. Scholey, J. M., Heuser, J., Yang, J. T. & Goldstein, L. S. B. (1989). Identification of globular mechanochemical heads of kinesin. Nature 338, 355–357.

    Article  CAS  PubMed  Google Scholar 

  23. Kuznetsov, S. A., Vaisberg, Y. A., Rothwell, S. W., Murphy, D. B. & Gelfand, V. I. (1989). Isolation of a 45 kDa fragment from the kinesin heavy chain with enhanced ATPase and microtubule-binding activities. J. Biol. Chem. 264, 589–595.

    CAS  PubMed  Google Scholar 

  24. Hirokawa, N., Shiomura, Y. & Okabe, S. (1988). Tau proteins: the molecular structure and mode of binding on microtubules. J. Cell Biol. 107, 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  25. Hagestedt, T., Lichtenberg, B., Wille, H., Mandelkow, E.-M. & Mandelkow, E. (1989). Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J. Cell Biol. 109, 1643–1652.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, G. L., Cowan, N. & Kirschner, M. (1988). The primary structure and heterogeneity of tau protein from mouse brain. Science 239, 285–288.

    Article  CAS  PubMed  Google Scholar 

  27. Lewis, S. A., Wang, D. & Cowan, N. J. (1988). Microtubule-associated protein MAP 2 shares a microtubule binding motif with tau protein. Science 242, 936–939.

    Article  CAS  PubMed  Google Scholar 

  28. Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J. & Crowther, R. A. (1989). Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 8, 393–399.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Weisenberg, R. C. (1980). Role of co-operative interactions, microtubule-associated proteins and guanosine triphosphate in microtubule assembly: a model. J. Mol. Biol. 139, 660–677.

    CAS  PubMed  Google Scholar 

  30. Drubin, D. G. & Kirschner, M. W. (1986). Tau protein function in living cells. J. Cell Biol. 103, 2739–2746.

    Article  CAS  PubMed  Google Scholar 

  31. Jensen, C. G. & Smaill, B. H. (1987). Analysis of the spatial organization of microtubule-associated proteins. J. Cell Biol. 103, 559–569.

    Article  Google Scholar 

  32. Amos, L. A. (1977). The arrangement of high molecular weight microtubule-associated proteins. J. Cell Biol. 72, 642–654.

    Article  CAS  PubMed  Google Scholar 

  33. Voter, W. A. & Erickson, H. P. (1982). Electron microscopy of MAP 2 (microtubule-associated protein 2). J. Ultrastruct. Res. 80, 374–382.

    Article  CAS  PubMed  Google Scholar 

  34. Schneider, A., Hemphill, A., Wyler, T. & Seebeck, T. (1988). Large microtubule-associated protein of T. brucei has tandemly repeated, near-identical sequences. Science 241, 459–462.

    Article  CAS  PubMed  Google Scholar 

  35. Ohta, K., Toriyama, M., Endo, S. & Sakai, H. (1988). Localization of mitotic-apparatus-associated 51 kD protein in unfertilized and fertilized sea urchin eggs. Cell Motil. & Cytoskel. 10, 496–505.

    Article  CAS  Google Scholar 

  36. Ishikawa, M., Murofushi, H. & Sakai, H. (1983). Bundling of microtubules in vitro by fodrin. J. Biochem. (Japan) 94, 1209–1217.

    CAS  Google Scholar 

  37. Ishikawa, M., Murofushi, H., Nishida, E. & Sakai, H. (1984). 33 K protein-an inhibitory factor of tubulin polymerization in porcine brain. J. Biochem. (Japan) 96, 959–969.

    Google Scholar 

  38. Papanrikopoulou, A., Doll, T., Tucker, R. P., Garner, C. C. and Matus, A. (1989). Embryonic MAP 2 lacks the crosslinking sidearm sequences and dendritic targeting signal of adult MAP 2. Nature 340, 650–652.

    Article  Google Scholar 

  39. Margolis, R. L. & Rauch, C. T. (1981). Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64 K protein. Biochemistry 20, 4451–4458.

    Article  CAS  PubMed  Google Scholar 

  40. Masumoto, G., Tsukita, S. & Arai, T. (1989). Organization of the axonal cytoskeleton: differentiation of the microtubule and actin filament arrays. In Cell Movement, vol. 2, ed. Warner, F. D. & McIntosh, J. R., pp. 335–356. New York: Alan R. Liss. (Includes axolinin molecule.)

    Google Scholar 

  41. Pratt, M. M. (1986). Stable complexes of axoplasmic vesicles and microtubules: protein composition and ATPase activity. J. Cell Biol. 103, 957–968.

    Article  CAS  PubMed  Google Scholar 

  42. Harada, Y. & Yanagida, T. (1988). Direct observations of molecular motility by light microscopy. Cell Motil. & Cytoskel. 10, 71–76.

    Article  CAS  Google Scholar 

  43. Kim, H., Binder, L. I. & Rosenbaum, J. L. (1979). The periodic association of MAP 2 with brain microtubules in vitro. J. Cell Biol. 80, 266–276.

    Article  CAS  PubMed  Google Scholar 

  44. Staden, R. (1982). An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucl. Acid. Res. 10, 2951–2961.

    Article  CAS  Google Scholar 

Late additions

  1. Shpetner, H. S. & Vallee, R. B. (1989). Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421–432.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, G. (1990). Tau protein: an update on structure and function. Cell Motil. & Cytoskel. 15, 199–203.

    Article  CAS  Google Scholar 

  3. Vallee, R. B. (1990). Molecular characterization of high molecular weight microtubule-associated proteins: some answers, many questions. Cell Motil. & Cytoskel. 15, 204–209.

    Article  CAS  Google Scholar 

  4. Vale, R. D. & Goldstein, L. S. B. (1990). One motor, many tails: an expanding repertoire of force-generating enzymes. Cell 60, 883–885.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1991 L. A. Amos and W. B. Amos

About this chapter

Cite this chapter

Amos, L.A., Amos, W.B. (1991). Proteins Associated with Microtubules. In: Molecules of the Cytoskeleton. Macmillan Molecular Biology Series. Palgrave, London. https://doi.org/10.1007/978-1-349-21739-7_8

Download citation

Publish with us

Policies and ethics