Microtubules in Cells

  • Linda A. Amos
  • W. Bradshaw Amos
Chapter
Part of the Macmillan Molecular Biology Series book series

Abstract

Chapter 7 describes some of the remarkable properties of tubulin. Tubulin itself is essentially the same in all microtubules; cytoplasmic microtubules can be decorated with flagellar dynein and cytoplasmic motors interact with flagellar microtubules. The arrangement of tubulin monomers has been found to be similar in all microtubules where this has been investigated. Doublet and triplet microtubules only occur in flagella, basal bodies and centrioles, but tubulin from other sources is capable of forming at least one of the lateral junctions required to form complex microtubules (see Section 7.4.2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

Reviews

  1. 1.
    Dustin, P. (1984). Microtubules, 2nd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
  2. 2.
    Porter, K. E. (1976). Introduction. In Cell Motility, ed. Goldman, C. R., Pollard, T. & Rosenbaum, J. New York: Cold Spring Harbor Press. (Some details are out of date, but this text is good for breadth of view.)Google Scholar
  3. 3.
    Roberts, K. R. & Hyams, J. S., eds (1979). Microtubules. London: Academic Press. (Comprehensive to 1978.)Google Scholar
  4. 4.
    Kirschner, M. & Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342.CrossRefPubMedGoogle Scholar
  5. 5.
    Vale, R. D. (1987). Intracellular transport using microtubule-based motors. Annu. Rev. Cell Biol. 3, 347–378.CrossRefPubMedGoogle Scholar
  6. Sheetz, M. P., Vale, R. D., Schroer, T. A. & Reese, T. S. (1986). Movements of vesicles on microtubules. Ann. N.Y. Acad. Sci., USA493, 409–416.CrossRefGoogle Scholar
  7. 6.
    Schnapp, B. J. & Reese, T. S. (1986). New developments in understanding rapid axonal transport. Trends Neurosci. 9, 155–162.CrossRefGoogle Scholar
  8. 7.
    Kreis, T. E. (1990). Role of microtubules in the organisation of the Golgi apparatus. Cell Motil. & Cytoskel. 15, 67–70.CrossRefGoogle Scholar
  9. Terasaki, M. (1990). Recent progress on structural interactions of the endoplasmic reticulum. Cell Motil. & Cytoskel. 15, 71–75.CrossRefGoogle Scholar
  10. 8.
    Lloyd, C. W. & Seagull, R. W. (1985). A new spring for plant cell biology: microtubules as dynamic helices. Trends Biochem. Sci. 10, 476–478.CrossRefGoogle Scholar
  11. 9.
    Hollenbeck, P. J. (1989). The transport and assembly of the axonal cytoskeleton. J. Cell Biol. 108, 223–227.CrossRefPubMedGoogle Scholar
  12. 10.
    Lasek, R. L., Garner, J. A. & Brady, S. T. (1984). Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s - 221s.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 11.
    Grafstein, B. & Forman, D. S. (1980). Intracellular transport in neurons. Physiol. Rev. 60, 1167–1283.PubMedGoogle Scholar
  14. 12.
    Ochs, S. (1982). On the mechanism of axoplasmic transport. In Axoplasmic Transport, ed. D. G. Weiss. pp. 342–350. New York: Springer-Verlag.Google Scholar
  15. 13.
    Bunge, M. B. (1986). The axonal cytoskeleton: its role in generating and maintaining cell form. Trends Neurosci. 9, 477–482.CrossRefGoogle Scholar
  16. 14.
    Hirokawa, N. (1986). Quick-frozen, deep-etch visualisation of the axonal cytoskeleton. Trends Neurosci. 9, 67–71.CrossRefGoogle Scholar
  17. 15.
    Black, M. M. & Baas, P. W. (1989). The basis of polarity in neurons. Trends Neurosci. 12, 211–214.CrossRefPubMedGoogle Scholar
  18. 16.
    Sargent, P. B. (1989). What distinguishes axons from dendrites? Neurons know more than we do. Trends Neurosci. 12, 203–205.CrossRefPubMedGoogle Scholar
  19. 17.
    Allen, R. D. (1987). The microtubule as an intracellular engine. Sci. Am. 255 (2), 42–49.CrossRefGoogle Scholar
  20. 18.
    Amos, L. A. & Amos, W. B. (1987). Cytoplasmic transport in axons. J. Cell Sci. 87, 1–2.PubMedGoogle Scholar
  21. 19.
    Brinkley, B. R. (1985). Microtubule organizing centers. Annu. Rev. Cell Biol. 1, 145–172.CrossRefGoogle Scholar
  22. 20.
    Tucker, J. B. (1984). Spatial organization of microtubule-organizing centers and microtubules. J. Cell Biol. 99, 55s - 62s.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 21.
    Sleigh, M. (1973). The Biology of Protozoa. London: Edward Arnold.Google Scholar

Original papers, for brief scanning

  1. 22.
    Soltys, B. J. & Borisy, G. G. (1985). Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J. Cell Biol. 100, 1682–1689.CrossRefPubMedGoogle Scholar
  2. 23.
    Schultze, E. & Kirschner, M. (1988). New features of microtubule behaviour observed in vivo. Nature 334, 356–359.CrossRefGoogle Scholar
  3. 24.
    Sammak, P. J. & Borisy, G. G. (1988). Direct observation of microtubule dynamics in living cells. Nature 332, 724–726.CrossRefPubMedGoogle Scholar
  4. 25.
    Tao, W., Walter, R. J. & Berns, M. W. (1988). Laser-transected microtubules exhibit individuality of regrowth; however, most free new ends of the microtubules are stable. J. Cell Biol. 107, 1025–1035.CrossRefPubMedGoogle Scholar
  5. 26.
    Keith, C. H. (1987). Slow transport of tubulin in the neurites of differentiated PC12 cells. Science 235, 337–339.CrossRefPubMedGoogle Scholar
  6. 27.
    Okabe, S. & Hirokawa, N. (1988). Microtubule dynamics in nerve cells: analysis using microinjection of biotinylated tubulin into PC12 cells. J. Cell Biol. 107, 651–663.CrossRefPubMedGoogle Scholar
  7. 28.
    Smith, R. S. (1988). Studies on the mechanism of the reversal of rapid organelle transport in myelinated axons of Xenopus laevis. Cell Motil. & Cytoskel. 10, 296–308.CrossRefGoogle Scholar
  8. 29.
    Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. (1989). Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures but not microtubules, in cultured cells. J. Cell Biol. 108, 1453–1463.CrossRefPubMedGoogle Scholar
  9. 30.
    Schroer, T. A., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. (1988). The role of kinesin and other soluble factors in organelle movement along microtubules. J. Cell Biol. 107, 1785–1792.CrossRefPubMedGoogle Scholar
  10. 31.
    Schroer, T. A., Steuer, E. R. & Sheetz, M. P. (1989). Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56, 937–946.CrossRefPubMedGoogle Scholar
  11. 32.
    Schnapp, B. J. & Reese, T. S. (1989). Dynein is the motor for retrograde axonal transport of organelles. Proc. Natl. Acad. Sci., USA 86, 1548–1552.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 33.
    Gilbert, S. P. & Sloboda, R. D. (1989). A squid dynein isoform promotes axoplasmic vesicle translocation. J. Cell Biol. 109, 2379–2394.CrossRefPubMedGoogle Scholar
  13. 34.
    Weisenberg, R. C., Flynn, J., Gao, B. & Awodi, S. (1988). Microtubule gelation-contraction in vitro and its relationship to component a of slow axonal transport. Cell Motil. & Cytoskel. 10, 331–340.CrossRefGoogle Scholar
  14. 35.
    Ellisman, M. H. & Lindsey, J. D. (1983). The axoplasmic reticulum within myelinated axons is not transported rapidly. J. Neurocytol. 12 393–411. (Smooth ER in axons.)CrossRefGoogle Scholar
  15. 36.
    Sheetz, M. P. (1989). Kinesin structure and function. In Cell Movement, vol. 2, ed. Warner, F. D. & McIntosh, J. R., pp. 277–285. New York: Alan R Liss.Google Scholar
  16. 37.
    Dabora, S. L. & Sheetz, M. P. (1988). The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54, 27–35.CrossRefPubMedGoogle Scholar
  17. 38.
    Lee, C. & Chen, L. B. (1988). Dynamic behavior of endoplasmic reticulum in living cells. Cell 54, 37–46.CrossRefPubMedGoogle Scholar
  18. 39.
    Vale, R. D. & Hotani, H. (1988). Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol. 107, 2233–2242.CrossRefPubMedGoogle Scholar
  19. 40.
    Matteoni, R. & Kreis, T. E. (1987). Translation and clustering of endosomes and lysosomes depends on microtubules. J. Cell Biol. 105, 1253–1265.CrossRefPubMedGoogle Scholar
  20. 41.
    Heuser, J. (1989). Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Biol. 108, 855–864.CrossRefPubMedGoogle Scholar
  21. 42.
    McNiven, M. A. & Ward, J. B. (1988). Calcium regulation of pigment transport in vitro. J. Cell Biol. 106, 111–125.CrossRefPubMedGoogle Scholar
  22. 43.
    Rozdzial, M. M. & Haimo, L. T. (1986). Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport. J. Cell Biol. 103, 2755–2764.CrossRefPubMedGoogle Scholar
  23. 44.
    Koonce, M. P. & Schliwa, M. (1986). Reactivation of organelle movements along the cytoskeletal framework of a giant freshwater amoeba. J. Cell Biol. 103, 605–612.CrossRefPubMedGoogle Scholar
  24. 45.
    Hollenbeck, P. J. & Bray, D. (1987). Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth. J. Cell Biol. 105, 2827–2835.CrossRefPubMedGoogle Scholar
  25. 46.
    Schulze, E., Asai, D. J., Bulinski, J. C. & Kirschner, M. W. (1987). Post-translational modification and microtubule stability. J. Cell Biol. 105, 2167–2177.CrossRefPubMedGoogle Scholar
  26. 47.
    Barra, H. S., Arce, C. A. & Argarana, C. E. (1988). Post-translational tyrosination and detyrosination of tubulin. Molec. Neurobiol. 2, 133–153.CrossRefGoogle Scholar
  27. 48.
    Gundersen, G. G., Khawja, D. & Bulinski, J. C. (1987). Postpolymerization detyrosination of a-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 105, 251–264.CrossRefPubMedGoogle Scholar
  28. 49.
    Maruta, H., Greer, K. & Rosenbaum, J. L. (1986). The acetylation of a-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 103, 571–579.CrossRefPubMedGoogle Scholar
  29. 50.
    Brinkley, B. R., Cox, S. M., Pepper, D. A., Wible, L., Brenner, S. L. & Pardue, R. L. (1981). Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J. Cell Biol. 90, 554–562.CrossRefPubMedGoogle Scholar
  30. 51.
    Bré, M.-H., Kreis, T. E. & Karsenti, E. (1987). Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of non-centrosomal, stable detyrosinated microtubules. J. Cell Biol. 105, 1283–1296.CrossRefPubMedGoogle Scholar
  31. 52.
    Mogensen, M. M. & Tucker, J. B. (1987). Evidence for microtubule nucleation at plasma membrane-associated sites in Drosophila. J. Cell Sci. 88, 95–107.PubMedGoogle Scholar
  32. 53.
    Woodrum, D. T. & Linck, R. W. (1980). Structural basis of motility in the microtubular axostyle: implications for cytoplasmic microtubule structure and function. J. Cell Biol. 87, 404–414.CrossRefPubMedGoogle Scholar
  33. 54.
    Bloodgood, R. A. (1988). Gliding motility and the dynamics of flagellar membrane glycoproteins in Chlamydomonas reinhardtii. J. Protozool. 35, 552–558.CrossRefPubMedGoogle Scholar
  34. 55.
    Tucker, J. B. (1968). Fine structure and function of the cytopharyngeal basket in the ciliate Nassula. J. Cell Sci. 3, 493–514.PubMedGoogle Scholar
  35. 56.
    Tucker, J. B. (1972). Microtubule-arms and propulsion of food particles inside a large feeding organelle in the ciliate Phascolodon vorticella. J. Cell Sci. 10, 883–903.PubMedGoogle Scholar
  36. 57.
    Scholey, J. M. (1990). Multiple microtubule motors. Nature 343, 118–120.CrossRefPubMedGoogle Scholar
  37. 58.
    Kelly,R.B.(1990).Associations between microtubules and intracellular organelles.Curr. Opinion Cell Biol.2, 105–108.CrossRefPubMedGoogle Scholar

Copyright information

© L. A. Amos and W. B. Amos 1991

Authors and Affiliations

  • Linda A. Amos
    • 1
  • W. Bradshaw Amos
    • 1
  1. 1.Laboratory of Molecular BiologyMedical Research CouncilCambridgeUK

Personalised recommendations