Statistical Inference in Time Series

  • P. Whittle
Part of the The New Palgrave book series (NPA)

Abstract

We shall use t to denote time. In principle the world evolves in continuous time, when t may take any value. However, observations will effectively be taken discretely, commonly at regular time intervals (e.g. daily, weekly, monthly, …). For analysis of observations it is then natural to work in discrete time and t may be assumed to take only integer values {…,— 2, — 1, 0, 1, 2, …}, if the observation interval is taken as the unit of time.

Keywords

Entropy Covariance Autocorrelation Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. 1977. On entropy maximization principle. In Applications of Statistics, ed. P.R. Krishnaiah, 27–41. Amsterdam: North-Holland.Google Scholar
  2. Astrom, K.J. and Mayne, D.Q. 1983. A new algorithm for recursive estimation of controlled ARMA processes. In Proc. 6th IF AC Symposium on Identification and System Parameter Estimation, eds G. A. Bekey and G. W. Saridis, 122–6. Oxford: Pergamon.Google Scholar
  3. Box, G.E.P. and Jenkins, G.M. 1970. Time Series Analysis, Forecasting and Control. San Francisco: Holden-Day.Google Scholar
  4. Brillinger, D.R. 1975. Time Series; Data Analysis and Theory. New York: Holt, Rinehart and Winston.Google Scholar
  5. Chen, H-F. 1985. Recursive Estimation and Control for Stochastic Systems. New York: Wiley.Google Scholar
  6. Dahlhaus, R. 1983. Spectral analysis with tapered data. J. Time Ser. Anal. 4, 163–75.CrossRefGoogle Scholar
  7. Durbin, J. 1960. The fitting of time series models. Rev. Internat. Inst. Statist. 28, 233–44.CrossRefGoogle Scholar
  8. Grenander, U. and Rosenblatt, M. 1957. Statistical Analysis of Stationary Time Series. New York: Wiley.Google Scholar
  9. Hannan, E.J. 1970. Multiple Time Series. New York: Wiley.CrossRefGoogle Scholar
  10. Hannan, E.J. 1980. The estimation of the order of an ARMA process. Ann. Statist. 8, 1071–81.CrossRefGoogle Scholar
  11. Hannan, E.J. and Rissanen, J. 1982. Recursive estimation of ARMA order. Biometrika 69, 91–4.CrossRefGoogle Scholar
  12. Hannan, E.J. and Deistler, M. 1988. The Statistical Theory of Linear Systems. New York: Wiley.Google Scholar
  13. Levinson, N. 1946. The Wiener RMS (Root Mean Square) error criterion in filter design and prediction. J. Math. Phys. 25, 261–78.CrossRefGoogle Scholar
  14. Ljung, L. 1987. System Identification: Theory for the User. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  15. Rissanen, J. 1983. Universal prior for parameters and estimation by minimum description length. Ann. Statist. 11, 416–31.CrossRefGoogle Scholar
  16. Tong, H. 1984. Threshold Models in Non-linear Time Series Analysis. New York: Springer.Google Scholar
  17. Whittle, P. 1951. Hypothesis Testing in Time Series Analysis. Uppsala: Almquist and Wicksell.Google Scholar
  18. Whittle, P. 1953a. Estimation and information in stationary time series. Arkiv for Matematik. 2(23), 423–34.CrossRefGoogle Scholar
  19. Whittle, P. 1953b. The analysis of multiple stationary time series. J. Roy. Statist. Soc. B. 15, 125–39.Google Scholar
  20. Whittle, P. 1963. On the fitting of multivariate autoregressions and the approximate canonical factorisation of a spectral density matrix. Biometrika 50, 129–34.CrossRefGoogle Scholar
  21. Young, P. 1984. Recursive Estimation and Time Series Analysis. Berlin: Springer.CrossRefGoogle Scholar
  22. Yule, G.U. 1927. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Phil. Trans. Roy. Soc. A. 226, 267–98.CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1990

Authors and Affiliations

  • P. Whittle

There are no affiliations available

Personalised recommendations