Taq DNA Polymerase

  • David H. Gelfand

Abstract

The polymerase chain reaction (PCR) method for amplifying selectively discrete segments of DNA has found wide-spread applications in molecular biology, due in part, to the substitution of a thermostable DNA polymerase isolated from Thermus aquaticus (Taq)1 for the previously used E. coli DNA Polymerase I, Klenow fragment (PolI-Kf).2,3 Since Taq DNA Polymerase can withstand repeated exposure to the high temperatures (94°–95°C)1 required for strand separation, the tedium and frequent rebellion resulting from having to add PolI-Kf after each cycle is minimized.

Keywords

Magnesium Urea Attenuation DMSO Sodium Chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, SJ., Higuchi, R., Horn, G.T., and Erlich, HA. (1988) Science 239:487–491.CrossRefGoogle Scholar
  2. 2.
    Mullis, K.B., and Faloona, F. (1987) Methods in Enzymology 155:335–350.CrossRefGoogle Scholar
  3. 3.
    Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. (1985) Science 230:1350–1354.CrossRefGoogle Scholar
  4. 4.
    Brock, T.D., and Freeze, H. (1969) J. Bacteriol. 98:289–297.Google Scholar
  5. 5.
    Chien, A., Edgar, D.B., and Trela, J.M. (1976) J. Bacteriol. 127:1550–1557.Google Scholar
  6. 6.
    Kaledin, A.S., Slyusarenko, A.G., and Gorodetskii, S.I. (1980) Biokhimiya 45:644–651.Google Scholar
  7. 7.
    Lawyer, F.C., Stoffel, S., Saiki, R.K., Myambo, K., Drummond, R., and Gelfand, D.H. (1989) J. Biol. Chem. 264:6427–6437.Google Scholar
  8. 8.
    Innis, MA., Myambo, K.B., Gelfand, D.H., and Brow, M.A.D. (1988) Proc. Natl. Acad. Sci. USA 85:9436–9440.CrossRefGoogle Scholar
  9. 9.
    Sabatino, R.D., Myers, T.W., Bambara, R.A., Kwon-Shin, O., Marraccino, R.L., and Frickey, P.H. (1988) Biochemistry 27:2998–3004.CrossRefGoogle Scholar
  10. 10.
    Tindall, K.R., and Kunkel, T.A. (1988) Biochemistry 27:6008–6013.CrossRefGoogle Scholar
  11. 11.
    Mendelman, LV., Boosalis, M.S., Petruska, J., and Goodman, M.F. (1989) J. Biol. Chem. in press.Google Scholar
  12. 12.
    Petruska, J., Goodman, M.F., Boosalis, M.S., Sowers, L.C., Cheong, C., and Tinoco, Jr., I. (1988) Proc. Natl Acad. Sci. USA 85:6252–6256.CrossRefGoogle Scholar
  13. 13.
    Scharf, S.J., Horn, G.T., and Erlich, H.A. (1986) Science 233:1076–1078.CrossRefGoogle Scholar
  14. 14.
    Stenesh, J., and Roe, B.A. (1972) BBA 272:156–166.Google Scholar
  15. 15.
    Kaboev, O.K., Luchkina, L.A., Akhrnedov, A.T., and Bekker, M.L. (1981) J. Bacteriol. 145:21–26.Google Scholar
  16. 16.
    Kaledin, A.S., Slyusarenko, A.G., and Gorodetskii, S.I. (1981) Biokkimiya 46:1576–1584.Google Scholar
  17. 17.
    Kaledin, A.S., Slyusarenko, A.G., and Gorodetskii, S.I. (1982) Biokkimiya 47:1785–1791.Google Scholar
  18. 18.
    Riittimann, O., Cotoras, M., Zaldivar, J., and Vicuna, R. (1985) Eur. J. Biochem. 149:41–46.CrossRefGoogle Scholar
  19. 19.
    Rossi, M., Rella, R., Pensa, M., Bartolucci, S., DeRosa, M., Gambacorta, A., Raia, CA., and Orabona N.D-A. (1986) System. Appl. Microbiol. 7:337–341.CrossRefGoogle Scholar
  20. 20.
    Klimczak, L.J., Grununt, F., and Burger, K.J. (1986) Biochemistry 25:4850–4855.CrossRefGoogle Scholar
  21. 21.
    Elie, C., DeRecondo, A.M., and Forterre, P. (1989) Eur. J. Biochem. 178:619–626.CrossRefGoogle Scholar
  22. 22.
    Bergquist, P.L., Love, D.R., Croft, J.E., Streiff, M.B., Daniel, R.M., and Morgan, W.H. (1987) Biotech. & Genet. Eng. Rev. 5:199–244.CrossRefGoogle Scholar
  23. 23.
    Kelly, R.M., and Deming, J.W. (1988) Biotechnol. Prog. 4:47–62.CrossRefGoogle Scholar
  24. 24.
    Bernad, A., Zaballos, A., Salas, M., and Blanco, L. (1987) EMBO 6:4219–4225.Google Scholar
  25. 25.
    Wang, T.S-F., Wong, S., and Korn, D. (1989) FASEB J. 3:14–21.Google Scholar

Copyright information

© Stockton Press 1989

Authors and Affiliations

  • David H. Gelfand

There are no affiliations available

Personalised recommendations