Skip to main content

Inverse Polymerase Chain Reaction

  • Chapter
PCR Technology

Abstract

We describe a procedure that extends the utility of the polymerase chain reaction (PCR) in allowing the geometric amplification of an unknown DNA sequence that flanks a core region of known sequence. DNA containing the core region is digested with appropriate restriction enzymes to produce a fragment of suitable size for PCR amplification. The ends of the fragment are then ligated to form a circular molecule. Primers for PCR are homologous to the ends of the core region included within the circle, but oriented such that chain elongation proceeds across the uncharacterized region of the circle rather than across the core region separating the primers. This “inverse PCR” procedure can be used to amplify the sequences that originally flanked the core sequence. Inverse PCR has applications in producing probes of anomymous sequences or in determining the sequences of upstream and downstream flanking regions themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ochman, H., Medhora, M., Garza, D., and Hartl, D.L. (1989) in PCR: Application & Protocols. Innis, M., Gelfand, D., Sninsky, J., and White, T., eds. Academic Press, New York.

    Google Scholar 

  2. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N.A. (1985) Science 230:1250–1354.

    Article  Google Scholar 

  3. Saiki, R.K., Bugawan, T.L., Horn, G.T., Mullis, K.B., and Erlich, H.A. (1986) Nature 324:163–166.

    Article  CAS  Google Scholar 

  4. Faloona, F., and Mullis, K.B. (1987) Meth. Enzymol. 155:335–350.

    Article  Google Scholar 

  5. Ochman, H., Gerber, A.S., and Hartl, D.L. (1988) Genetics 120:621–623.

    CAS  Google Scholar 

  6. Triglia, T., Peterson, M.G., and Kemp, D.J. (1988) Nucl. Acids Res. 16:8186.

    Article  CAS  Google Scholar 

  7. Silver, J., and Keerikatte, V. (1989) J. Cell. Biochem. Abstract #WH239, Suppl. 13E.

    Google Scholar 

  8. Collins, F.S., and Weissman, S.M. (1984) Proc. Natl. Acad. Sci. USA 81:6812–6816.

    Article  CAS  Google Scholar 

  9. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, SJ., Higuchi, R.G., Horn, G.T., Mullis, K.B., and Erlich, H.A. (1988) Science 239:487–491.

    Article  CAS  Google Scholar 

  10. Wrischnik, L.A., Higuchi, R.G., Stoneking, M., Erlich, H.A., Arnheim, N.A., and Wilson, A.C. (1987) Nucl. Acids Res. 15:529–535.

    Article  CAS  Google Scholar 

  11. Garza, D., Ajioka, J.W., Burke, D.T., and Hartl, D.L. (1989) Science, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 Stockton Press

About this chapter

Cite this chapter

Ochman, H., Ajioka, J.W., Garza, D., Hartl, D.L. (1989). Inverse Polymerase Chain Reaction. In: Erlich, H.A. (eds) PCR Technology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-20235-5_10

Download citation

Publish with us

Policies and ethics