Pharmacological studies on the release and effects of leukotrienes in human and guinea pig lung tissue

  • G. C. Folco


The recent discovery that some arachidonic acid metabolites derived from the 5-lipoxygenase pathway are responsible for slow-reacting substance of anaphylaxis (SRS-A) activity has greatly stimulated research in the field of asthma and other allergic diseases (Murphy et al., 1979). In fact these compounds, which were first detected in leucocytes, possess as a common feature a conjugated triene and have been named leukotrienes (Samuelsson &; Hammarström, 1980).


Arachidonic Acid Metabolism Arachidonic Acid Metabolite Normal Human Lung Normal Human Lung Tissue Ileal Longitudinal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BORGEAT, P. &;amp; SIROIS, P. (1981). Leukotrienes: a major step in the understanding of immediate hypersensitivity reactions. J. med. Chem., 24, 121–126.PubMedCrossRefGoogle Scholar
  2. CRYSTAL, R.G., GADEK, J.E., FERRANS, V.J., FULMER, J.D., LINE, B.R. &;amp; HUNNINGHAKE, G.W. (1981). Interstitial lung disease: current concepts of pathogenesis, staging and therapy. Am. J. Med., 70, 542–568.PubMedCrossRefGoogle Scholar
  3. DAHLEN, S.E., HANSSON, G., HEDOVIST, P., BJÖRCK, T., GRANSTRÖM, E. & DAHLEN, B. (1983). Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4, D4 and E4. Proc. natn. Acad. Sci. U.S.A., 80, 1712–1716.CrossRefGoogle Scholar
  4. DAHLEN, S.E, HEDOVIST, P., HAMMARSTRÖM, S. & SAMUELSSON, B. (1980). Leukotrienes are potent constrictors of human bronchi. Nature, 288, 5790, 484–486.PubMedCrossRefGoogle Scholar
  5. DRAZEN, M.J., AUSTEN, K.F., LEWIS, R.A., CLARK, D.A., GOTO, G., MARFAT, A. & COREY, E.J. (1980). Comparative airway and vascular activities of leukotriene C and D in vivo and in vitro. Proc. natn. Acad. Sci. U.S.A., 77, 4354–4358.CrossRefGoogle Scholar
  6. DRAZEN, J.M., LEWIS, R.A., AUSTEN, K.F., TODA, M., BRION, F., MARFAT, A. & DRAZEN, J.M. (1983). Contractile activity of structural analogs of leukotrienes C and D: necessity of a hydrophobic region. New Engl. J. Med., 308, 8, 436–439.PubMedCrossRefGoogle Scholar
  7. ENGINEER, D.M., NIEDERHAUSER, U., PIPER, P.J. & SIROIS, P. (1978). Release of mediators of anaphylaxis: inhibition of prostaglandin synthesis and the modification of release of slow reacting substance of anaphylaxis and histamine. Br. J. Pharmac., 62, 61–66.CrossRefGoogle Scholar
  8. FELS, ANNA O.S., PAWLOWSKI, N.A., CRAMER, E.B., KING, T.K.C., COHN, Z.A. & SCOTT, W.A. (1982). Human alveolar macrophages produce leukotriene B4. Proc. natn. Acad. Sci. U.S.A., 79, 7866–7870.CrossRefGoogle Scholar
  9. GRANSTROM, E. & KINDHAL, H. (1978). Radioimmunoassay of prostaglandins and thromboxanes. In Adv. Prostaglandin and Thromboxane Res., Samuelsson, B. & Paoletti, R. (eds), pp. 119–210, New York: Raven Press.Google Scholar
  10. GRIFFIN, M., WEISS, W.J., LEITCH, A.G., McFADDEN, E.R., COREY, E.J., AUSTEN, K.F. & DRAZEN, J.M. (1983). Effect of leukotriene D on the airways in asthma. New Engl. J. Med., 308, 8, 436–439.PubMedCrossRefGoogle Scholar
  11. GRYGLEWSIU, R.J., DEMBINSKA-KIEC, A. & GRODZINSKA, L. (1976). Generation of prostaglandins and thromboxane-like substances by large airways and lung parenchyma. In Prostaglandins and Thromboxanes, Berti, F., Samuelsson, B. & Velo, G.P. (eds) pp. 165–178, New York: Plenum Press.Google Scholar
  12. HOLROYDE, M.C. & GHELANI, A.M. (1983). Kinetics of action of two leukotriene antagonists on guinea-pig ileum. Eur. J. Pharmac., 90, 251–255.CrossRefGoogle Scholar
  13. KELLAWAY, C.H. & TRETHEWIE, E.R. (1940). The liberation of a slow reacting smooth muscle stimulating substance in anaphylaxis. Q.J. Exp. Physiol., 30, 121–145.CrossRefGoogle Scholar
  14. MONCADA, S. & VANE, J.R. (1981). Prostacyclin. In The Prostaglandin System. Endoperoxides, Prostacyclin and Thromboxanes. Berti, F. & Velo, G.P. (eds) pp. 203–221, New York: Plenum Press.Google Scholar
  15. MURPHY, R.C., HAMMARSTRÖM, S. & SAMUELSSON, B. (1979). Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc. natn. Acad. Sci. U.S.A., 76, 4275–4279.CrossRefGoogle Scholar
  16. NICOSIA, S., CROWLEY, H.J., OLIVA, D. & WELTON, A.F. (1984). Binding sites for 3H-LTC4 in membranes from guinea-pig ileal longitudinal muscle. Prostaglandins, 27, 3, 483–494.PubMedCrossRefGoogle Scholar
  17. PONG, S.S. & DEHAVEN, R.N. (1983). Characterization of a leukotriene D4 receptor in guinea-pig lung. Proc. natn. Acad. Sci. U.S.A., 80, 7415–7419.CrossRefGoogle Scholar
  18. POWELL, W.S. (1982). Rapid extraction of arachidonic acid metabolites from biological samples using acetylsilyl silica. In Methods in Enzymology. Lands, W.EM. & Smith, W.L. (eds) 86, pp. 467–477, New York: Academic Press.Google Scholar
  19. ROSSONI, G. OMINI, C., VIGANO, T., MANDELLI, V., FOLCO G.C. & BERTI, F. (1980). Bronchoconstriction by histamine and bradykinin in guinea-pigs: relationship to thromboxane A2 generation and the effect of aspirin. Prostaglandins, 20, 547–557.PubMedCrossRefGoogle Scholar
  20. ROVATI, G.E., OLIVA, D., SAUTEBIN, L. FOLCO, G.C., WELTON, A.F. &; NICOSIA, S. (1984). Identification of specific binding sites for LTC4 in human lung. J. din. Invest. (in press).Google Scholar
  21. SAMUELSSON, B. &; HAMMARSTRÖM, S. (1980). Nomenclature for Leukotrienes. Prostaglandins,19, 645–648.PubMedCrossRefGoogle Scholar
  22. SAUTEBIN, L., CARUSO, D., GALLI, G., PAOLETTI, R. (1983). Preferential utilization of endogenous arachidonate by cyclo-oxygenase in incubations of human platelets. FEBS Lett. 157, 173–178.PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • G. C. Folco
    • 1
  1. 1.Institute of Pharmacology and PharmacognosyUniversity of MilanoItaly

Personalised recommendations