Skip to main content

Formation and mechanism of action of leukotrienes: enzymatic hydration of leukotriene A4 by human blood cells

  • Chapter
  • 107 Accesses

Abstract

Leukotrienes (LT) are lipids formed by cellular metabolism of polyunsaturated acids, particularly arachidonic acid (Corey, 1982; Samuelsson 1983). Biologically active leukotrienes include LTC4 [(5S,6R)-5-hydroxyl-6-(S-glutathionyl)-7,9-trans-11,14-cis-eicosatetraenoic acid] and its metabolites which are chemical constituents of slow reacting substances of anaphylaxis (Murphy et al., 1979; Lewis et al., 1980; Morris et al., 1980; Orning et al., 1980), and LTB4 [(5S,12R)-5,12-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid] which activates leucocytes (Borgeat & Samuelsson, 1979 a,b; Ford-Hutchinson et al., 1980; Rollins et al., 1983) and contracts respiratory smooth muscle (Sirois et al., 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BEUTLER, E., WEST, C. & BLUME, K.-G. (1976). The removal of leukocytes and platelets from whole blood. J. lab. clin. Med., 88, 328–333.

    PubMed  CAS  Google Scholar 

  • BORGEAT, P., HAMBERG, M. & SAMUELSSON, B. (1976). Transformation of arachidonic acid and homo-γ-linolenic acid by rabbit polymorphonuclear leukocytes. J. biol. Chem., 251, 7816–7820.

    PubMed  CAS  Google Scholar 

  • BORGEAT, P. & SAMUELSSON, B. (1979a). Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J. biol. Chem., 254, 2643–2646.

    PubMed  CAS  Google Scholar 

  • BORGEAT, P. & SAMUELSSON, B. (1979b). Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy fatty acids. Proc. nam. Acad. Sci. U.S.A., 76, 3213–3217.

    Article  CAS  Google Scholar 

  • BOYUM, A. (1968). Isolation of mononuclear cells and granulocytes from human blood. Scand. J. din. lab. Invest., 21, suppl. 97, 77–89.

    Article  CAS  Google Scholar 

  • COREY, E.J. (1982). Chemical studies on slow reacting substances/leukotrienes. Experientia, 38, 1259–1275.

    Article  PubMed  CAS  Google Scholar 

  • FITZPATRICK, F., HAEGGSTROM, J. GRANSTRÖM, E. & SAMUELSSON, B. (1983). Metabolism of Leukotriene A4 by an enzyme in blood plasma: a possible leukotactic mechanism. Proc. natn. Acad. Sci. U.S.A., 80, 5425–5429.

    Article  CAS  Google Scholar 

  • FITZPATRICK, F., LIGGETT, W., McGEE, J., BUNTING, S., MORTON, D. & SAMUELSSON, B. (1984). Metabolism of leukotriene A4 by human erythrocytes: a novel cellular source of leukotriene B4. J. biol. Chem., (in press).

    Google Scholar 

  • FITZPATRICK, F., MORTON, D. & WYNALDA, M. (1982). Albumin stabilizes leukotriene A4. J. biol. Chem., 257, 4680–4683.

    PubMed  CAS  Google Scholar 

  • FORD-HUTCHINSON, A., BRAY, M., CUNNINGHAM, F., DAVIDSON, E. & SMITH, M. (1981). Isomers of leukotriene B4 possess different biological potencies. Prostaglandins, 21, 143–152.

    Article  PubMed  CAS  Google Scholar 

  • FORD-HUTCHINSON, A.W., BRAY, M., DOIG, M., SHIPLEY M. & SMITH, M. (1980). Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature, 286, 264–265.

    Article  PubMed  CAS  Google Scholar 

  • GILL, S. & HAMMOCK, B. (1981). Epoxide hydrolase activity in the mitochondrial fraction of mouse liver. Nature, 291, 167–168.

    Article  PubMed  CAS  Google Scholar 

  • GUENTHNER, T. & OESCH, F. (1983). Identification and characterization of a new epoxide hydrolase from mouse liver microsomes. J. biol. Chem., 258, 15054–15061.

    PubMed  CAS  Google Scholar 

  • HAMBERG, M. & SAMUELSSON, B. (1974). Prostaglandin endoperoxides VII. Novel transformations of arachidonic acid in guinea pig lung. Biochem. biophys. Res. Commun., 61, 942–949.

    Article  PubMed  CAS  Google Scholar 

  • IRVINE, R.F. (1982). How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J., 204, 3–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • JAKSCHIK, B., FALKENHEIM, S. & PARKER, C. (1977). Precursor role of arachidonic acid in release of slow reacting substance from rat basophilic leukemia cells. Proc. natn. Acad. Sci. U.S.A., 74, 4577–4581.

    Article  CAS  Google Scholar 

  • JAKSCHIK, B., HARPER, T. & MURPHY, R. (1982). Leukotriene C4 and D4 formation by particulate enzymes. J. biol. Chem., 257, 5346–5349.

    PubMed  CAS  Google Scholar 

  • JAKSCHIK, B. & KUO, C. (1983). Characterization of leukotriene A4 and B4 biosynthesis. Prostaglandins, 25, 767–782.

    Article  PubMed  CAS  Google Scholar 

  • JAKSCHIK, B. & LEE, L. (1980). Enzymatic assembly of slow reacting substance. Nature, 287, 51–52.

    Article  PubMed  CAS  Google Scholar 

  • KOBAYASHI, T. & LEVINE, L. (1983). Arachidonic acid metabolism by erythrocytes. J. biol. Chem., 258, 9116–9121.

    PubMed  CAS  Google Scholar 

  • LEWIS, R., AUSTEN, K.F., DRAZEN, J., CLARK, D., MARFAT, A. & COREY, E.J. (1980). Slow reacting substances of anaphylaxis: identification of leukotrienes C-1 and D from human and rat sources. Proc. natn. Acad. Sci. U.S.A., 77, 3710–3714.

    Article  CAS  Google Scholar 

  • MAAS, R.L. & BRASH, A. (1983). Evidence for a lipoxygenase mechanism in the biosynthesis of epoxide and dihydroxy leukotrienes from 15(S)-hydroperoxy-eicosatetraenoic acid by human platelets and porcine leukocytes. Proc. natn. Acad. Sci. U.S.A., 80, 2884–2888.

    Article  CAS  Google Scholar 

  • MARCUS, C., HABIG, W., & JAKOBY, W. (1978). Glutathione-S-transferase from human erythrocytes. Archs. Biochem. Biophys., 188, 287–293.

    Article  CAS  Google Scholar 

  • MATHEWS, R., ROKACH, J. & MURPHY, R. (1981). Analysis of leukotrienes by high pressure liquid chromatography. Analyt. Biochem., 118, 96–101.

    Article  PubMed  CAS  Google Scholar 

  • MAYCOCK, A., ANDERSON, M., DeSOUSA, D. & KUEHL, F. (1982). Leukotriene A4: preparation and enzymatic conversion in a cell free system to leukotriene B4. J. biol. Chem., 257, 13911–13914.

    PubMed  CAS  Google Scholar 

  • MORRIS, H., TAYLOR, G., PIPER, P. & TIPPINS, J. (1980). Structure of slow reacting substance of anaphylaxis from guinea pig lung. Nature, 285, 104–106.

    Article  PubMed  CAS  Google Scholar 

  • MURPHY, R., HAMMARSTRÖM, S. & SAMUELSSON, B. (1979). Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc. natn. Acad Sci U.S.A., 76, 4275–4279.

    Article  CAS  Google Scholar 

  • OESCH, F. (1973). Mammalian epoxide hydrases: inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotka, 3, 305–340.

    Article  CAS  Google Scholar 

  • ORNING, L., HAMMARSTROM, S. & SAMUELSSON, B. (1980). Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. Proc. natn. Acad. Sci. U.S.A., 77, 2014–2017.

    Article  CAS  Google Scholar 

  • POWELL, W. (1980). Rapid extraction of oxygenated metabolites of arachidonic acid from biological samples using octadecyl silica. Prostaglandins, 20, 947–957.

    Article  PubMed  CAS  Google Scholar 

  • ROLLINS, T., ZANOLARI, B., SPRINGER, M., GUINDON, Y., ZAMBONI, R., LAU, C.-K. & ROKACH, J. (1983). Synthetic leukotriene B4 is a potent chemotaxin but a weak secretagogue from human PMN. Prostaglandins, 25, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • SAMUELSSON, B. (1983). Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science, 220, 568–575.

    Article  PubMed  CAS  Google Scholar 

  • SEIDEGARD, J. & DePIERRE, J. (1983). Microsomal epoxide hydrolase: properties, regulation, and function. Biochim. biophys. Acta., 695, 251–270.

    PubMed  CAS  Google Scholar 

  • SHIMIZU, T., RADMARK, O. & SAMUELSSON, B. (1984). Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc. natn. Acad. Sci. U.S.A., 81, 689–693.

    Article  CAS  Google Scholar 

  • SIROIS, P., ROY, S., BORGEAT, P., PICARD, S. & COREY, E.J. (1981). Structural requirements for the action of leukotriene B4 on the guinea pig lung: importance of double bond geometry in the 6,8,10-triene unit. Biochim. biophys. Res. Commun., 99, 385–390.

    Article  CAS  Google Scholar 

  • SRIVASTAVA, S.K. AWASTHI, Y., MILLER, S., YOSHIDA, A. & BEUTLER, E. (1976). Studies on γ-glutamyl trans-peptidase in human and rabbit erythrocytes. Blood, 47, 645–650.

    PubMed  CAS  Google Scholar 

  • VARGAS, J., RADOMSKI, M, & MONCADA, S. (1982). The use of prostacyclin in the separation from plasma and washing of human platelets. Prostaglandins, 23, 929–945.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner Cheryl Padgham Eileen Ashcroft

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Fitzpatrick, F.A., Liggett, W.F., McGee, J.E. (1984). Formation and mechanism of action of leukotrienes: enzymatic hydration of leukotriene A4 by human blood cells. In: Paton, W., Mitchell, J., Turner, P., Padgham, C., Ashcroft, E. (eds) IUPHAR 9th International Congress of Pharmacology London 1984. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-17615-1_7

Download citation

Publish with us

Policies and ethics