Advertisement

Introduction: Receptors and receptor-mediated responses

  • Hiroshi Yoshida

Abstract

Since Langley at the beginning of this century introduced the term ‘receptive substances’ when writing about the sites of action of both atropine and pilocarpine and also of curare and nicotine, the concept of receptors has often been used and has been familiar to pharmacologists for a long time. However, the nature of the receptors had remained unknown.

Keywords

Adenylate Cyclase Contractile Response Muscarinic Acetylcholine Receptor Heterologous Desensitization Nicotinic AChR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BURGOYNE, R.D. (1983). Regulation of the muscarinic AChR: Effects of phosphorylating conditions on agonist and antagonist binding. J. Neurochem., 40, 324–331.PubMedCrossRefGoogle Scholar
  2. CHUANG, D.M. & COSTA, E. (1980). Evidence for internalization of the recognition site of β-adrenergic receptors during β-adrenergic receptor desensitization in frog erythrocytes. Mol. Pharmac., 18, 348–355.Google Scholar
  3. DIAMOND, I., GORDON, A.S., DAVIS, C.G. & MILFAY, D. (1983). Phenytoin and phosphorylation of nicotinic receptors. Adv. in Neurology, 34, 339–344.Google Scholar
  4. DRACHMAN, D.B. (1981). The biology of myasthenia gravis. A. Rev. Neurosci., 4, 195–225.CrossRefGoogle Scholar
  5. EHRLICH, Y.H., WI-IITTEMORE, S.R., GARFIELD, M.K., GRABER, S.G. & LENOX, R.H. (1982). Protein phosphorylation in the regulation and adaptation of receptor function. Prog. Brain Res., 56, 96.Google Scholar
  6. HARRIS, A.J. (1974). Inductive functions of the nervous system. A. Rev. Physiol., 36, 251–305.CrossRefGoogle Scholar
  7. HATA, F., TAKEYASU, K., MORIKAWA, Y., LAI, R.T., ISHIDA, H. & YOSHIDA, H. (1980). Specific changes in the cholinergic system in guinea pig vas deferens after denervation. J. Pharmac. exp. Ther., 215, 716–722.Google Scholar
  8. HATA, F., TAKEYASU, K., UCHIDA, S. & YOSHIDA, H. (1980a). Increase in response and number of α-adrenoceptors of rat vas deferens on brief pretreatment with an α-agonist. Eur. J. Pharmac., 67, 193–199.CrossRefGoogle Scholar
  9. HATA, F., UCHIDA, S., TAKEYASU, K., ISHIDA, H. & YOSHIDA, H. (1980b). Changes in a-adrenergic receptors in rat brain in vitro by preincubation with α-adrenergic ligands. Japan. J. Phanmac., 30, 570–574.CrossRefGoogle Scholar
  10. HIGUCHI, H., TAKEYASU, K., UCHIDA, S. & YOSHIDA, H. (1981). Receptor-activated and energy-dependent decrease of muscarinic cholinergic receptors in guineapig vas deferens. Eur. J. Pharmac., 75, 305–311.CrossRefGoogle Scholar
  11. HIGUCHI, H., TAKEYASU, K., UCHIDA, S. & YOSHIDA, H. (1982). Mechanism of agonist-induced degradation of muscarinic cholinergic receptor in cultured vas deferens of guinea pig. Eur. J. Pharmac., 79, 67–77.CrossRefGoogle Scholar
  12. HIGUCHI, H., UCHIDA, S., MATSUMOTO, K. & YOSHIDA, H. (1983). Inhibition of agonist-induced degradation of muscarinic cholinergic receptor by quinacrine and tetracaine — possible involvement of phospholipase A2 in receptor degradation. Eur. J. Pharmac., 94, 229–239.CrossRefGoogle Scholar
  13. KLAWANS, H.L. & MARGOLIN, D.I. (1975). Amphetamine induced dopaminergic hypersensitivity in guinea pigs. Arch. Gen. Psychiat., 32, 725–733.PubMedCrossRefGoogle Scholar
  14. LAI, R.-T., WATANABE, Y., KAMINOH, Y. & YOSHIDA, H. (1984). Interaction between 2-chloroadenosine and α2-adrenoceptors in rat vas deferens. Life Sci., 34, 409–418.PubMedCrossRefGoogle Scholar
  15. LAW, P.Y., HOM, D.S. & LOH, H.H. (1983). Opiate receptor down-regulation and desensitization in neuroblastoma x glioma NG108–15 hybrid cells are two separate cellular adaptation processes. Mol. Pharmac., 24, 413–424.Google Scholar
  16. LØMO, T. & ROSENTHAL, J. (1972). Control of ACh sensitivity by muscle activity in the rat. J. Physiol., 221, 493–513.PubMedPubMedCentralCrossRefGoogle Scholar
  17. LØMO, T. & WESTGAARD, R.H. (1976). Control of ACh sensitivity in rat muscle fibers. In Spring Harbor Symposium on Quantitative Biol., 15, 263–274.CrossRefGoogle Scholar
  18. LUNDBERG, J.M., HEDLUNG, B. & BARTFAI, T. (1982). Vasoactive intestinal peptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature, 295, 147–149.PubMedCrossRefGoogle Scholar
  19. OLSEN, R.W. (1982). Drug interactions at the GABA receptor-ionophore complex. A. Rev. Pharmac. Toxicol., 22, 245–277.CrossRefGoogle Scholar
  20. POST, R.M. (1980). Intermittent versus continuous stimulation: Effect of time interval on the development of sensitization or tolerance. Life Sci., 26, 1275–1279.PubMedCrossRefGoogle Scholar
  21. STADEL, J.M., STRULOVICI, B., NAMBI, P., LAWN, T.N., BRIGGS, M.M., CARON, M.G. & LEFKOWITZ, R.T. (1983). Desensitization of the β-adrenergic receptor of frog erythrocytes. Recovery and characterization of the down-regulated receptors in sequestered vesicles. J. Biol. Chem., 258, 3032–3038.PubMedGoogle Scholar
  22. STEPHENSON, R.P. (1956). A modification of receptor theory. Br. J. Pharmac., 11, 379–386.Google Scholar
  23. STERNWEIS, P.C. & GILMAN, A.G. (1979). Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S49 lymphoma cell. J. biol. Chem.. 254, 3333–3340.PubMedGoogle Scholar
  24. SU, Y., FU, HARDEN, T.K. & PERKINS, J.P. (1980). Catecholamine-specific desensitization of adenylate cyclase. Evidence for a multistep process. J. biol. Chem., 255, 7410–7419.PubMedGoogle Scholar
  25. TAKEYASU, K., UCHIDA, S., NOGUCHI, Y., FUJITA, N., SAITO, K., HATA, F. & YOSHIDA, H. (1979a). Changes in brain muscarinic acetylcholine receptors and behavioral responses to atropine and apomorphine in chronic atropine treated rats. Life Sci., 25, 585–592.PubMedCrossRefGoogle Scholar
  26. TAKEYASU, K., UCHIDA, S., WADA, A., MARUNO, M., LAI, R.T., HATA, F. & YOSHIDA, H. (1979b). Experimental evidence and dynamic aspects of spare receptor. Life Sci., 25, 1761–1772.PubMedCrossRefGoogle Scholar
  27. TAKEYASU, K., UCHIDA, S., LAI, R.T., HIGUCHI, H., NOGUCHI, Y. & YOSHIDA, H. (1981). Regulation of muscarinic acetylcholine receptors and contractility of guinea pig vas deferens. Life Sci., 28, 527–540.PubMedCrossRefGoogle Scholar
  28. TAKEYASU, K., HIGUCHI, H., FUJITA, N., UCHIDA, S. & YOSHIDA, H. (1982a). Desensitization of the alpha adrenergic receptor system in guinea pig vas deferens. Life Sci., 31, 89–100.PubMedCrossRefGoogle Scholar
  29. TAKEYASU, K., HIGUCHI, H., UCHIDA, S., MATSUMOTO, K., FUJITA, N. & YOSHIDA, H. (1982b). Regulation of the alpha-adrenergic system in rat vas deferens. Japan. J. Pharmac. 32, 875–882.CrossRefGoogle Scholar
  30. TOFFANO, G., GUIDOTTI, A. & COSTA, E. (1978). Purification of an endogenous protein inhibitor of the high affinity binding of GABA to synaptic membranes of rat brain. Proc. natn. Acad. Sci, U.S.A., 75,, 4024–4028.CrossRefGoogle Scholar
  31. UCHIDA, S., TAKEYASU, K., MATSUDA, T. & YOSHIDA, H. (1979). Changes in muscarinic acetylcholine receptors of mice by chronic administration of diisopropyl-fluorophosphate and papaverine. Life Sci., 24„ 1805–1812.PubMedCrossRefGoogle Scholar
  32. UCHIDA, S., MATSUMOTO, K., TAKEYASU, K., HIGUCHI, H. & YOSHIDA, H. (1982). Molecular mechanism of the effects of guanine nucleotide and sulfhydryl reagent on muscarinic receptors in smooth muscles studied by radiation inactivation. Life Sci., 31, 201–209.PubMedCrossRefGoogle Scholar
  33. UEKI, S., OKAMOTO, E., KUWATA, K., TOYOSAKA, A., NAGAI, K., UCHIDA, S. & YOSHIDA, H. (1983). Increase in muscarinic receptors in mouse intestine by hexamethonium treatment. Life Sci., 32, 2431–2437.PubMedCrossRefGoogle Scholar
  34. VENTER, J.C., FRASER, C.M. & HARRISON, L.C. (1980). Auto antibodies to β2-adrenergic receptors: A possible cause of adrenergic hyporesponsiveness in allergic rhinitics and asthma. Science, 207, 1361–1363.PubMedCrossRefGoogle Scholar
  35. WATANABE, Y., LAI, R.T. & YOSHIDA, H. (1982). Increase of 3H-clonidine binding sites induced by adenosine receptor agonists in rat vas deferens in vitro. Eur. J. Pharmac., 86, 265–269.CrossRefGoogle Scholar
  36. YONEDA, Y. & KURIYAMA, K. (1980). Presence of a low molecular weight endogenous inhibitor on 3H-muscimol binding in synaptic membranes. Nature, 285, 670–673.PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • Hiroshi Yoshida
    • 1
  1. 1.Department of Pharmacology I, Osaka University School of MedicineOsaka University School of MedicineOsakaJapan

Personalised recommendations