William Withering Commemoration Lecture: Withering’s discovery and his modern scientific legacy

  • D. Noble


200 years ago, on each Monday night of the full moon, a small band of men would have been found dispersing from a house in Birmingham (then a small town of 30,000) to take their carriages home. Their attachment to the full moon was purely practical (it lit the way home). They had just met for dinner and discussion, and those discussions were to have immense social and technological effect on European and American society. At their centre was Matthew Boulton, inventor and entrepreneur, who, together with Erasmus Darwin (the grandfather of Charles Darwin, and who would, surely, have been the most famous provincial physician of the time had William Withering not appeared on the scene), and William Small (a physician, to whose practice William Withering succeeded) started in about 1765 what eventually became known as the Lunar Society. Schofield (1963) describes the Society as a brilliant microcosm of that scattered community of provincial manufacturers and professional men who found England a rural society with an agricultural economy and left it urban and industrial. … The revolution they manipulated was more insidious — and more lasting — than that created by their French counterparts, for these men were the harbingers of the Industrial Revolution.


Cardiac Glycoside Sodium Pump Purkinje Fibre Free Intracellular Calcium High Affinity Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS, R.J., SCHWARTZ, A., GRUPP, G., GRUPP, I., LEE, S.W., WALLICK, E.T. & 3 OTHERS. (1982). High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature, 296, 167–169.PubMedCrossRefGoogle Scholar
  2. AITON, J.F., LAMB, J.F. & OGDEN, P. (1981). Downregulation of the sodium pump following chronic exposure of HeLa cells and chick embryo heart cells to ouabain. Br. J. Pharmac., 73, 333–340.CrossRefGoogle Scholar
  3. AKERA, T. & BRODY, T.M. (1978). The role of Na,K-ATPase in the inotropic action of digitalis. Pharmac, Rev., 39, 197–330.Google Scholar
  4. ALLEN, D.G., EISNER, D.A., LAB, M.J. & ORCHARD, C.H. (1983a). Oscillations on intracellular [Ca2+] in ferret ventricular muscle. J. Physiol., 336, 64–65P.Google Scholar
  5. ALLEN, D.G., EISNER, D.A. & ORCHARD, C.H. (1983b). Oscillations of intracellular [Ca2+] in resting ferret cardiac muscle. J. Physiol., 345, 23P.CrossRefGoogle Scholar
  6. BLAUSTEIN, M.P. & HODGKIN, A.L. (1968). The effect of cyanide on calcium efflux in squid axons. J. Physiol., 198, 46–48P.Google Scholar
  7. BLAUSTEIN, M.P. & HODGKIN, A.L. (1969). The effect of cyanide on the efflux of calcium from squid axons. J. Physiol., 200, 497–527.PubMedPubMedCentralCrossRefGoogle Scholar
  8. BLAUSTEIN, M.P. & NELSON, M.T. (1982). Sodium-calcium exchange: its role in the regulation of cell calcium. In Calcium Transport across Biological Membranes. Carafoli, E. (ed.) pp. 217–236. New York: Academic Press.Google Scholar
  9. BODEM, G. & DENGLER, H.J. (eds) (1978). Cardiac Glycosides. Berlin: Springer-Verlag.Google Scholar
  10. COHEN, I., DAUT, J. &NOBLE, D. (1976). An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibres. J. Physiol., 260, 75–103.PubMedPubMedCentralCrossRefGoogle Scholar
  11. COLQHOUN, D., NEHER, E., REUTER, H. & STEVENS, C.F. (1981). Inward current channels activated by intracellular Ca in cultured heart cells. Nature, 294, 752–754.CrossRefGoogle Scholar
  12. DARWIN, E. (1789). The Botanic Garden. Part II: The Loves of the Plants. Lichfield: J. Johnson.Google Scholar
  13. DARWIN. E. (1791). The Botanic Garden. Part I: The Economy of Vegetation. London: J. Johnson.Google Scholar
  14. DAUT, J. & RÜDEL, R. (1982). The electrogenic sodium pump in guinea-pig ventricular muscle: inhibition of pump current by cardiac glycosides. J. Physiol., 330, 243–264.PubMedPubMedCentralCrossRefGoogle Scholar
  15. DEITMER, J.W. & ELLIS, D. (1978). The intracellular sodium activity of cardiac Purkinje fibres during inhibition and re-activation of the sodium-potassium pump. J. Physiol., 284, 241–259.PubMedPubMedCentralCrossRefGoogle Scholar
  16. DIFRANCESCO, D. & NOBLE, D. (1984). A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. Roy. Soc., B. (in press).Google Scholar
  17. EISNER, D.A. & LEDERER, W.J. (1979). Inotropic and arrhythmogenic effects of potassium-depleted solutions on mammalian cardiac muscle. J. Physiol., 294, 255–277.PubMedPubMedCentralCrossRefGoogle Scholar
  18. EISNER, D.A. & LEDERER, W.J. (1980). Characterisation of the sodium pump in cardiac Purkinje fibres. J. Physiol., 303, 441–474.PubMedPubMedCentralCrossRefGoogle Scholar
  19. EISNER, D.A. & LEDERER, W.J. (1982). Effects of caffeine on the transient inward current in cardiac Purkinje fibres. J. Physiol., 322, 48–49P.Google Scholar
  20. EISNER, D.A., LEDERER, W.J. & NOBLE, D. (1979). Caffeine and tetracaine abolish the slow inward current in sheep cardiac Purkinje fibres. J. Physiol., 293, 76P.Google Scholar
  21. EISNER, D.A., LEDERER, W.J. & VAUGHAN-JONES, R.D. (1981). The dependence of sodium pumping and tension on intracellular sodium activity of sheep Purkinje fibres J. Physiol., 317, 163–187.PubMedPubMedCentralCrossRefGoogle Scholar
  22. EISNER, D.A., LEDERER, W.J. & VAUGHAN-JONES, R.D. (1983a). The control of tonic tension by membrane potential and intracellular sodium activity in the sheep cardiac Purkinje fibres. J. Physiol., 335, 723–743.PubMedPubMedCentralCrossRefGoogle Scholar
  23. EISNER, D.A., LEDERER, W.J. & VAUGHAN-JONES, R.D. (1983b). The relationship between twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres. J. Physiol., 341, 28–29P.Google Scholar
  24. ELLIS, D. (1977). The effects of external cations and ouabain on the intracellular Na activity of Sheep heart Purkinje fibres. J. Physiol., 273, 211–240.PubMedPubMedCentralCrossRefGoogle Scholar
  25. FABIATO, A. & FABIATO, F. (1975). Contractions induced by a calcium-triggered release from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol., 249, 469–495.PubMedPubMedCentralCrossRefGoogle Scholar
  26. FERRIER, G.R. & MOE, G.K. (1973). Effect of calcium on acetyl-strophanthidin-induced transient depolarizations in canine Purkinje tissue. Circulation Res., 33, 508–515.PubMedCrossRefGoogle Scholar
  27. FISHMAN, M.C. (1979). Endogenous digitalis-like activity in mammalian brain. Proc natn. Acad. Sci. U.S.A., 76, 4661–4663.CrossRefGoogle Scholar
  28. GADSBY, D.C. (1980). Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibres. J. gen. Physiol., 65, 345–365.Google Scholar
  29. GLYNN, I.M. (1957). The action of cardiac glycosides on sodium and potassium movements in human red cells. J. Physiol., 136, 148–173.PubMedPubMedCentralCrossRefGoogle Scholar
  30. GODFRAIND, T. (1980). Stimulation et inhibition de la pompe à sodium par les hétérosides cardiotoniques. Bull. Acad. R. Med. Belg., 135, 174–192.Google Scholar
  31. GODFRAIND, T., CASTANEDA-HERNANDEZ, G., GHYSEL-BURTON, J. & DEPOVER, A. (1983). Hypothesis for the mechanism of stimulation of the Na/ K pump by cardiac glycosides — role of endogenous digitalis-like factor. Current Topics in Membranes and Transport, 19, 913–915.CrossRefGoogle Scholar
  32. GODFRAIND, T. & GHYSEL-BURTON, J. (1977). Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature, 265, 165–166.PubMedCrossRefGoogle Scholar
  33. GODFRAIND, T., GHYSEL-BURTON, J. & DE POVER, A. (1982). Dihydroouabain is an antagonist of ouabain inotropic action. Nature, 299, 824–826.PubMedCrossRefGoogle Scholar
  34. HAMLYN, J.M., COHEN, N. & BLAUSTEIN, M.P. (1983). Stimulation of dog kidney Na+K-ATPase by low dose cardiotonic steroids is due to disinhibition of the enzyme. Circulation, 68, (Suppl. III), 249A.Google Scholar
  35. HART, G., NOBLE, D. & SHIMONI, Y. (1983). The effects of low concentrations of cardiotonic steroids on membrane currents and tension in sheep Purkinje fibres J. Physiol., 334, 103–131.PubMedPubMedCentralCrossRefGoogle Scholar
  36. HOUGEN, T.J. & SMITH, T.W. (1978). Inhibition of myocardial monovalent cation active transport by subtoxic doses of ouabain in the dog. Circ. Res., 42, 856–863.PubMedCrossRefGoogle Scholar
  37. HOUGEN, T.J. & SMITH, T.W. (1980). Biphasic effect of cardiac glycosides on the sodium pump: role of catecholamines. Circulation, 62, 987.Google Scholar
  38. ISENBERG, G. & TRAUTWEIN, W. (1974). The effect of dihydro-ouabain and lithium ions on the outward current in cardiac Purkinje fibres. Evidence for electrogenicity of transport. Pflügers Arch., 395, 41–54.CrossRefGoogle Scholar
  39. KASS, R.S., LEDERER, W.J., TSIEN, R.W. & WEINGART, R. (1978). Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J. Physiol., 281, 187–208.PubMedPubMedCentralCrossRefGoogle Scholar
  40. KAZAZOGLOU, T., RENAUD, J-F., ROSSI, B. & LAZDUNSKI, M. (1983). Two classes of ouabain receptors in chick ventricular cardiac cells and their relation to (Na+,K+)-ATPase inhibition, intracellular Na+ accumulation, Ca2+ influx, and cardiotonic effect. J. biol. Chem., 258, 12163–12170.PubMedGoogle Scholar
  41. LAMB, J.F. & McCALL, D. (1972). Effect of prolonged ouabain treatment on Na, K, Cl and Ca concentration and fluxes in cultured human cells. J. Physiol., 225, 599–617.PubMedPubMedCentralCrossRefGoogle Scholar
  42. LEDERER, W.J. & TSIEN, R.W. (1976). Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J. Physiol., 263, 73–100.PubMedPubMedCentralCrossRefGoogle Scholar
  43. LEE, C.O. & DAGOSTINO, M. (1982). Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibres. Biophys. J., 40, 185–198.PubMedPubMedCentralCrossRefGoogle Scholar
  44. MULLINS, L.J. (1981). Ion Transport in the Heart. New York: Raven Press.Google Scholar
  45. NOBLE, D. (1980a). Le couplage excitation-contraction. Rôle des courants ioniques et des pompes ioniques. J. Physiol (Paris), 76, 89–95.Google Scholar
  46. NOBLE, D. (1980b). Review: mechanism of action of therapeutic levels of cardiac glycosides. Cardiovascular Res., 14, 495–514.CrossRefGoogle Scholar
  47. NOBLE, D. (1984a). The Surprising Heart: a review of recent progress in cardiac electrophysiology. J. Physiol., 353, 1–50.PubMedPubMedCentralCrossRefGoogle Scholar
  48. NOBLE, D. (1984b). The electrogenic Na-K pump and actions of the cardiac glycosides. Eur. Heart J. (in press).Google Scholar
  49. NOBLE, D. & NOBLE, S.J. (1984). A model of sinoatrial node electrical activity using a modification of the DiFrancesco-Noble (1984) equations. Proc. Roy. Soc., B. (in press).Google Scholar
  50. NOBLE, D. & POWELL, T. (1984). Calcium currents and calcium-dependent inward current. In Parratt, J. (ed.), Control and Manipulation of Calcium Movement. New York: Raven Press (in press).Google Scholar
  51. PECK, T.W. & WILKINSON, K.D. (1950). William Withering of Birmingham, MD, FRS, FLS, Bristol: John Wright; London: Simpkin, Marshall.Google Scholar
  52. REUTER, H. & SEITZ, N. (1968). The dependence of calcium efflux from cardiac muscle on temperature andexternal ion composition. J. Physiol., 195, 451–470.PubMedPubMedCentralCrossRefGoogle Scholar
  53. ROGERS, T.B. & LAZDUNSKI, M. (1979). Photoaffinity labelling of a small protein component of a purified (Na+-K*)ATPase. FEBS Lett., 98, 373–376.PubMedCrossRefGoogle Scholar
  54. SCHATZMANN, H.J. (1953). Herzglykoside als Hemmstoffe für den aktiven Kalium und Natriumtransport durch die Erythrocytenmembran. Helv. Physiol. Acta, 11, 346–354.Google Scholar
  55. SCHIFFMAN, Y. (1980). Bifurcation in the privileged two-dimensional reaction-diffusion system as the ligantinduced redistribution, and biochemical control as its functional significance. Prog. biophys. Mol. Biol., 36, 87–130.CrossRefGoogle Scholar
  56. SCHOFIELD, R.E. (1963). The Lunar Society of Birmingham. Oxford: Clarendon Press.Google Scholar
  57. SHEU, S.-S. & FOZZARD, H.A. (1982). Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development J. gen. Physiol., 80, 325–351.PubMedCrossRefGoogle Scholar
  58. SHEU, S.-S. HAMLYN, J.M. & LEDERER, W.J. (1983). Low dose cardiotonic steroids, intracellular sodium and tension in heart. Circulation, 68, (Suppl III), 250A.Google Scholar
  59. TSIEN, R.W., KASS, R.S. & WEINGART, R. (1979). Cellular and subcellular mechanisms of cardiac pace-maker ‘oscillations. J. exp. Biol., 81, 205–215.PubMedGoogle Scholar
  60. WITHERING, W. (1773). Experiments upon the different kinds of marle found in Staffordshire. Phil. Trans. Roy. Soc., 63, 161.CrossRefGoogle Scholar
  61. WITHERING W. (1776). A Botanical Anangement of All the Vegetables Naturally Growing in Great Britain. Birmingham: M. Swinney.Google Scholar
  62. WITHERING, W. (1779). An Account of the Scarlet Fever. London: T.Cadell.Google Scholar
  63. WITHERING. W. (1782). An analysis of two mineral substances, viz. the Rowley Rag-stone and the Toad-stone. Phil. Trans. Roy. Soc., 72, 327–336.CrossRefGoogle Scholar
  64. WITHERING W. (1784). Experiments and observations on the Terra Ponderosa. Phil. Trans. Roy. Soc., 74, 293–311.CrossRefGoogle Scholar
  65. WITHERING, W. (1785). An Account of the Foxglove and some of its Medical Uses: with practical remarks on Dropsy, and some other Diseases. Birmingham: M. Swinney.CrossRefGoogle Scholar
  66. WITHERING, W. (1788). A letter to Joseph Priestley, LLD on the principle of acidity, the decomposition of water. Phil. Trans. Roy. Soc., 78, 319–330.Google Scholar
  67. WITHERING, W. (1790). An account of some extraordinary effects of lightning. Phil. Trans. Roy. Soc., 80, 293–295.CrossRefGoogle Scholar
  68. WITHERING, W. Jr (1822). The miscellaneous Tracts of the Late William Withering., MD, FRS, London: Longman.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • D. Noble
    • 1
  1. 1.University Laboratory of PhysiologyUK

Personalised recommendations