Receptor localisation in asymmetric cells

  • A. W. Cuthbert


Transporting epithelial cells differ from symmetric cells in that they have two distinct membrane domains, apical and basolateral. Even at the morphological level the asymmetry is obvious, microvilli being confined to the apical domain. Lateral intercellular spaces are often extremely tortuous, but the basolateral membranes are smooth. Cells are joined at their apical margins by tight junctions which form the boundary between the two membrane domains. In general, it is the nature of the tight junctions which determines the transepithelial resistance and consequently the transepithelial potential, so that epithelia can be classified as tight, with high transepithelial potentials, or leaky, with low potentials.


Sodium Channel MDCK Cell Basolateral Membrane Apical Domain Chloride Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACEVES, J. & CUTHBERT, A.W. (1979). Uptake of [3H] benzamil at different sodium concentrations. Inferences regarding the regulation of sodium permeability. J. Physiol., 295, 491–504.PubMedPubMedCentralCrossRefGoogle Scholar
  2. ACEVES, J., CUTHBERT, A.W. & EDWARDSON, J.M. (1979). Estimation of the density of sodium entry sites in frog skin epithelium from the uptake of [3H] benzamil. J. Physiol., 295, 477–490.PubMedPubMedCentralCrossRefGoogle Scholar
  3. BOLTON, J.E. & HELD, M. (1977). Ca ionophorestimulated ion secretion in rabbit ileal mucosa. Relation to actions of cyclic 3′,5′-AMP and carbamylcholine. J. memb. Biol., 35, 159–173.CrossRefGoogle Scholar
  4. BRASSITUS, T.A. & SCHECHTER, D. (1980). Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes. Biochemistry, 19, 2763–2769.CrossRefGoogle Scholar
  5. COLEMAN, D.L., WET, I.K. & WIDDICOMBE, J.H. (1984). Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol., 246, 355–359.Google Scholar
  6. CUTHBERT, A.W. & EDWARDSON, J.M. (1979). Synthesis, properties and biological activity of tritiated N-benzyl amino-3,5-diamino-6-chloro-pyrazine carboxamide. J. pharm. Pharmac., 31, 382–386.CrossRefGoogle Scholar
  7. CUTHBERT, A.W. & EDWARDSON, J.M. (1981). Addressing receptors—a model study. Br. J. Pharmac., 74, 780P–781P.Google Scholar
  8. CUTHBERT, A.W. & MARGOLIUS, H.S. (1982). Kinins stimulate net chloride secretion by the rat colon. Br. J. Pharmac., 75, 587–598.CrossRefGoogle Scholar
  9. CUTHBERT, A.W. & SHUM, W.K. (1976). Estimation of the lifespan of amiloride binding sites in a sodium transporting epithelium. J. Physiol., 260, 213–235.CrossRefGoogle Scholar
  10. CUTHBERT, A.W. & SPAYNE, J.A. (1983). Conversion of sodium channels to a form sensitive to cyclic AMP by components(s) from red cells. Br. J. Pharmac., 79, 783–797.CrossRefGoogle Scholar
  11. CUTHBERT, A.W., FANELLI, G.M. & SCRIABINE, A. (1979). Amiloride and epithelial sodium transport, Baltimore & Munich: Urban & Schwarzenberg.Google Scholar
  12. CUTHBERT, A.W., HALUSHKA, P.V., MARGOLIUS, H.S. & SPAYNE, J.A. (1984a). Role of calcium ions in kinininduced chloride secretion. Br. J. Pharmac., 82, 587–595.CrossRefGoogle Scholar
  13. CUTHBERT, A.W., HALUSHKA, P.V., MARGOLIUS, H.S. & SPAYNE, J.A. (1984b). Mediators of the secretory response to kinins. Br. J. Pharmac., 82, 597–607.CrossRefGoogle Scholar
  14. DE LORENZO, R.J., WALTON, K.G., CURRAN, P.F. & GREENGARD, P. (1973). Regulation of phosphorylation of a specific protein in toad bladder membrane by antidiuretic hormone and cyclic AMP, and its possible relation to membrane permeability changes. Proc. natn. Acad. Sci. U.S.A., 70, 880–884.CrossRefGoogle Scholar
  15. DHARMSATHAPHORN, K., HARMS, V., YAMASHIRO, D.J., HUGHES, R.J., BINDER, H.J. & WRIGHT, E.M. (1983). Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J. clin. Invest., 71, 27–35.PubMedPubMedCentralCrossRefGoogle Scholar
  16. DOUGLAS, A.P., KERLEY, R. & ISSELBACHER, K.J. (1972). Preparation and characterization of the lateral and basal plasma membranes of the rat intestinal epithelial cell. Biochem. J., 128, 1329–1338.PubMedPubMedCentralCrossRefGoogle Scholar
  17. DRAGSTEN, P.R., BLUMENTHAL, R. & HANDLER, J.S. (1981). Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature, 294, 718–722.PubMedCrossRefGoogle Scholar
  18. DUNPHY, W.G., FRIES, E., URBANI, L.J. & ROTHMAN, J.E. (1981). Early and late functions associated with the Golgi apparatus reside in distinct compartments. Proc. natn. Acad. Sci. U.S.A., 78, 7453–7457.CrossRefGoogle Scholar
  19. EDWARDSON, J.M. (1984). Effects of monensin on the processing and intracellular transport of influenza virus haemagglutinin in infected MDCK cells. J. Cell Sci., 65, 209–221.PubMedGoogle Scholar
  20. EVANS, W.H. (1980). A biochemical dissection of the functional polarity of the plasma membrane of the hepatocyte. Biochim. biophys. Acta, 604, 27–64.PubMedCrossRefGoogle Scholar
  21. FORBUSH, B. & PALFREY, H.C. (1983). 3H-Bumetanide binding to membranes isolated from dog kidney outer medulla. J. biol. Chem., 258, 11787–11792.PubMedGoogle Scholar
  22. FOSTER, E.S., ZIMMERMAN, T.W., HAYSLETT, J.P. & BINDER, H.J. (1983). Corticosteroid alteration of active electrolyte transport in rat distal colon. Am. J. Physiol., 245, 668–675.Google Scholar
  23. FRIZZELL, R.A., FIELD, M. & SCHULTZ, S.G. (1979). Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol., 236, 1–8.Google Scholar
  24. GARTY, H. & EDELMAN, I.S. (1983). Amiloride sensitive trypsinisation of apical sodium channels. J. Gen. Physiol., 81, 785–803.Google Scholar
  25. GREEN, J., GRIFFITHS, G., LOUVARD, D., QUINN, P. & WARREN, G. (1981). Passage of viral proteins through the Golgi complex. J. mol. Biol., 152, 663–698.PubMedCrossRefGoogle Scholar
  26. HAURI, H.-P., QUARONI, A. & ISSELBACHER, K.J. (1979). Biosynthesis of intestinal plasma membrane: post-translational route and cleavage of sucrase-isomaltase. Proc. natn. Acad. Sci. U.S.A., 76, 5183–5186.CrossRefGoogle Scholar
  27. IVES, H.E., YEE, V.J. & WARNOCK, D.G. (1983). Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell. J. biol. Chem., 258, 13513–13516.PubMedGoogle Scholar
  28. KATZ, F.N., ROTHMAN, J.E., LINGAPPA, V.R., BLOBEL, G. & LODISH, H.F. (1977). Membrane assembly in vitro: synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc. natn. Acad. Sci. U.S.A., 74, 3278–3282.CrossRefGoogle Scholar
  29. LAMB, J.F., OGDEN, P. & SIMMONS, N.L. (1981). Autoradiographic localisation of 3H-ouabain bound to cultured epithelial cell monolayers of MDCK cells. Biochim. biophys. Acta, 644, 333–340.PubMedCrossRefGoogle Scholar
  30. LEBLOND, C.P. & BENNETT, G. (1977). Role of the Golgi apparatus in terminal glycosylation. In International Cell Biology 1976–1977, Brinkley, B.R. & Porter, K.R. (eds) pp. 326–336, New York: Rockefeller University Press.Google Scholar
  31. LI, J.H-Y., PALMER, L.G., EDELMAN, I.S. & LINDEMANN, B. (1982). The role of sodium channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J. memb. Biol., 64, 77–89.CrossRefGoogle Scholar
  32. MACKNIGHT, A.D.C., DIBONA, D.R. & LEAF, A. (1980). Sodium transport across toad urinary bladder. A model ‘tight’ epithelium. Physiol. Rev., 60, 615–715.PubMedGoogle Scholar
  33. McQUEEN, N.L., NAYAK, D.P., JONES, L.V. & COMPANS, R.W. (1984). Chimeric influenza virus haemagglutinin containing either the NH2 terminus or the COOH terminus of G protein of vesicular stomatitis virus is defective in transport to the cell surface. Proc. natn. Acad. Sci. U.S.A., 81, 395–399.CrossRefGoogle Scholar
  34. MILLS, J.W. & DIBONA, D.R. (1978). Distribution of Na’ pump sites in the frog gall bladder. Nature, 271, 272–275.CrossRefGoogle Scholar
  35. MILLS, J. W., ERNST, S.A. & DIBONA, D.R. (1977). Localisation of Na+-pump sites in frog skin. J. cell. Biol., 73, 88–110.PubMedCrossRefGoogle Scholar
  36. MILLS, J.W., MACKNIGHT, A.D.C., DAYER, J.M. & AUSIELLO, D.A. (1979). Localization of [3H]ouabain-sensitive Na pump sites in cultured pig kidney cells. Am. J. Physiol., 236, C157–C162.Google Scholar
  37. PALMER, L.G., LI, J.H.-Y., LINDEMANN, B. & EDELMANN, I.S. (1982). Aldosterone control of the density of sodium channels in the toad urinary bladder. J. memb. Biol., 69, 91–102.Google Scholar
  38. PERKINS, F.M. & HANDLER, J.S. (1981). Transport properties of toad kidney epithelia in culture. Am. J. Physiol., 241, 154–159.Google Scholar
  39. PISAM, M. & RIPOCHE, P. (1976). Redistribution of surface macromolecules in dissociated epithelial cells. J. cell. Biol., 71, 907–920.PubMedCrossRefGoogle Scholar
  40. RABITO, C., TCHAO, R., VALENTICH, J. & LEIGHTON, J. (1980). Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro, 16, 461–468.PubMedCrossRefGoogle Scholar
  41. RIMELE, T.J., O’DORISIO, M. & GAGINELLA, T.S. (1981). Evidence for muscarinic receptors on rat colonic epithelial cells. Binding of 3H-quinuclidinyl benzoate. J. Pharmac. exp. Ther., 218, 426–434.Google Scholar
  42. RINDLER, M.J., IVANOU, I.F., RODRIGUEZ-BOULAN, E. & SABATINI, D.D. (1982). Biogenesis of epithelial cell plasma membranes. In Membrane Recycling, Collins, D. (ed.) Ciba Foundation Symposium, 92, pp. 184–202, London: Putnam.Google Scholar
  43. RODRIGUEZ-BOULAN, E. & SABATINI, D.D. (1978). Asymmetric budding of viruses in epithelial monolayers. A model system for study of epithelial polarity. Proc. natn. Acad. Sci. U.S.A., 75, 5071–5075.CrossRefGoogle Scholar
  44. RODRIGUEZ-BOULAN, E., PASKIET, K.T. & SABATINI, D.D. (1983). Assembly of enveloped viruses in Madin-Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J. cell. Biol., 96, 866–874.PubMedCrossRefGoogle Scholar
  45. RODRIGUEZ-BOULAN, E., PASIUET, K.T., SALAS, P.J.I. & BARD, E. (1984). Intracellular transport of influenza virus haemagglutinin to the apical surface of Madin-Darby canine kidney cells. J. cell. Biol., 98, 308–319.PubMedCrossRefGoogle Scholar
  46. ROTH, M.G., COMPANS, R.W., GUISTI, L., DAVIS, A.R., NAYAK, D.P., GETHING, M.-J. & SAMBROOK, J. (1983). Influenza virus haemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned haemagglutinin. DNA. Cell, 33, 435–443.PubMedCrossRefGoogle Scholar
  47. TARTAKOFF, A.M. (1983). Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell, 32, 1026–1028.PubMedCrossRefGoogle Scholar
  48. TARTAKOFF, A. & VASSALLI, P. (1978). Comparative studies of intracellular transport of secretory proteins. J. cell. Biol., 79, 694–707.PubMedCrossRefGoogle Scholar
  49. VAN DREISSCHE, W. & LINDEMANN, B. (1979). Concentration dependence of currents through single sodium selective pores in frog skin. Nature, 282, 519–520.CrossRefGoogle Scholar
  50. VISO, F. & CUTHBERT, A.W. (1979). Asymmetry of attack by phospholipase C on the two sides of an epithelial membrane. Comp. Biochem. Physiol., 63A, 467–470.CrossRefGoogle Scholar
  51. WAECHTER, C.J. & LENNARZ, W.J. (1976). The role of polyprenol-linked sugars in glycoprotein synthesis. A. Rev. Biochem., 45, 95–142.CrossRefGoogle Scholar
  52. WILL, P.C., LEBOWITZ, J.L. & HOPFER, U. (1980). Induction of amiloride-sensitive sodium transport in the rat colon by mineralocorticoids. Am. J. Physiol., 238, 261–268.Google Scholar
  53. WILL, P.C., DeLISLE, R.C., CORTRIGHT, R.N. & HOPFER, U. (1981). Induction of amiloride-sensitive sodium transport in the intestines by adrenal steroids. Ann. N.Y. Acad. Sci., 372, 64–76.PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • A. W. Cuthbert
    • 1
  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUK

Personalised recommendations