Advertisement

Enzymes as antiviral targets

  • Y. Cheng
  • K. Bastow
  • K. Frank
  • L. Nutter
  • J. -F. Chiou
  • S. Grill

Abstract

Viruses as a whole are important pathogens. They have also been found to have a close association with certain human malignancies. Five types of herpesviruses were identified to be the causative agents in human diseases. They are herpes simplex virus (HSV) type 1, HSV-2, cytomegalovirus (CMV), Epstein Barr virus (EBV) and varicella zoster virus (VZV). These are DNA viruses capable of inducing biochemical changes in infected cells, which in most cases are triggered by virus induced or coded enzymes or proteins (Nahmias et al., 1981; Roizman, 1983). Several enzymes involved in DNA synthesis are known to be specified by some or all types of herpesvirus. A summary of these identified enzymes and the primary reactions they catalyze (Lemaster & Roizman, 1980; Blue & Stobbs, 1981; Cheng et al., 1982) is presented in Table 1.

Keywords

Herpes Simplex Virus Herpes Simplex Virus Type Thymidine Kinase Varicella Zoster Virus Nucleoside Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVERETT, D.R., LUBBERG, C., ELION, G.B. & SPECTOR, T. (1983). Ribonucleotide reductase induced by Herpes Simplex Type I Virus. Characterization of a distinct enzyme. J. biol. Chem., 258, 9831–9838.Google Scholar
  2. BACCHETTI, S., EVELEGH, M.J., MUIRHEAD, B., SARTORI, C.S. & HUSZAR, D. (1984). Immunological Characterization of Herpes Simplex Virus Type I and II. Polypeptide(s) involved in viral ribonucleotide reductase activity. J. Virol., 49, 591–593.Google Scholar
  3. BASTOW, K.F., DERSE, D.D. & CHENG, Y.-C. (1983). Susceptibility of phosphonoformic acid-resistant Herpes Simplex Virus variants to arabinosylnucleosides and aphidicolin. Antimicrob. Agents. Chemother., 23, 914–917.Google Scholar
  4. BLUE, W.T. & STOBBS, D.G. (1981). Isolation of a protein kinase induced by Herpes Simplex Virus Type I. J. Virol., 38, 383–388.Google Scholar
  5. BRUTLAG, D. & KORNBERG, A. (1972). Enzymatic synthesis of deoxyribonucleic acid. XXVI. A proofreading function for the 3′-5′ exonuclease activity in deoxyribonucleic acid polymerase. J. biol. Chem., 247, 241–248.Google Scholar
  6. BURNS, W.H., SARSAL, R., SANTOS, G.W., LASKIN, O.L., LIETMAN, P.S., McLAREN, C. & BARRY, D.W. (1982). Isolation and characterization of resistant Herpes Simplex Virus after acyclovir therapy. Lancet, 421–423.Google Scholar
  7. CHENG, Y.-C. (1977). A rational approach to the development of antiviral chemotherapy: Alternative substrates of Herpes Simplex Virus Type I and Type II thymidine kinase. Ann. N.Y. Acad. Sci., 18, 594–598.CrossRefGoogle Scholar
  8. CHENG, Y.-C. (1981). Molecular basis and pharmacological consideration of selective antiherpetic agent. In Herpetic Eye Diseases. Herausgegeban von R. Sundmacher (ed.), pp. 237–246, Munchen: J.F. Bergmann Verlag.Google Scholar
  9. CHENG, Y.-C. (1983). HSV Thymidine Kinase dependent antiviral agent. In Antiviral Drugs and Interferon: The Molecular Basis of Their Activity. Y. Becker (ed.) (in press).Google Scholar
  10. CHENG, Y.-C. & DERSE, D. (1981). Approaches and limitations in the development of selective antiherpes virus agents based on virus specified enzymes. In The Medicinal Chemistry Symposium 1981. J.B. Thomas (ed.), Amsterdam/New York/Oxford: Elsevier/North Holland (in press).Google Scholar
  11. CHENG, Y.-C., GRILL, S., DERSE, D., CHEN, J.-Y., CARADONNA, S.J. & CONNER, K. (1981). Mode of action of Phosphonoformate as an antiherpes simplex agent. Biochim. biophys. Acta., 652, 90–98.Google Scholar
  12. CHENG, Y.-C., NAKAYAMA, K., DERSE, D., BASTOW, K., RUTH, J., TAN, R.S., DUTSCHMAN, G., CARADONNA, S.J. & GRILL, S. (1982). Herpes virus specified enzymes: properties, physiological roles, and pharmacological implications. In: Herpesvirus, Clinical, Pharmacological and Basic Aspects, H. Shiota, Y.-C. Cheng & W.H. Prusoff (eds) pp. 47–56, Amsterdam/Oxford/Princeton: Excerpta Medica.Google Scholar
  13. COEN, D.M., FURMAN, P.A., ASCHMAN, D.P. & SCHAFFER, P.A. (1983). Mutations in the Herpes Simplex Virus DNA polymerase gene conferring hypersensitivity to aphidicolon. Nuc. Acids Res., 11, 5287–5297.Google Scholar
  14. COHEN, G.H. (1972). Ribonucleotide reductase activity of synchronized KB cells infected with Herpes Simplex Virus. J. Virol., 9, 408–418.PubMedPubMedCentralGoogle Scholar
  15. COHEN, G.H., FACTOR, M.N. & PONCE de LEON, M. (1974). Inhibition of Herpes Simplex Virus type II replication by thymidine. J. Virol., 14, 20–25.Google Scholar
  16. CRUMPACKER, C.S., SCHNIPPER, I.E., MARLOWE, S.I., KOWALSKY, P.N., HERSHEY, B.J. & LEVIN, M.J. (1982). Resistance to antiviral drugs of Herpes Simplex Virus isolated from a patient treated with acyclovir. N. Engl. J. Med., 306, 343–346.Google Scholar
  17. DARBY, G. & FIELD, H.J. (1984). Latency and acquired resistance — problems in chemotherapy of herpes infections. Pharmac. Ther., 23, 217–225.Google Scholar
  18. DARBY, G., FIELD, H.J. & SALISBURY, S.A. (1981). Altered substrate specificity of Herpes Simplex Virus thymidine kinase confers acyclovir-resistance. Nature, 289, 81–83.Google Scholar
  19. DERSE, D.D., BASTOW, K.F. & CHENG, Y.-C. (1982). Characterization of the DNA polymerases induced by a group of Herpes Simplex Virus type I variants selected for growth in the presence of phosphonoformic acid. J. biol. Chem., 257, 10251–10260.Google Scholar
  20. DERSE, D.D. & CHENG, Y.-C. (1981). Herpes Simplex Virus type I DNA polymerase. Kinetic properties of the associate 3′-5′ exonuclease activity and its role in araAMP incorporation. J. biol. Chem., 256, 8525–8530.Google Scholar
  21. DERSE, D.D., CHENG, Y.-C., FURMAN, P.A., ST. CLAIR, M.H. & ELION, G.B. (1981). Inhibition of purified human and Herpes Simplex Virus-induced DNA polymerase by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function. J. biol. Chem., 256, 11447–11451.Google Scholar
  22. DUTIA, B.M. (1983). Ribonucleotide reductase induced by Herpes Simplex Virus has a virus-specified constituent. J. Gen. Virol., 64, 513–521.PubMedCrossRefGoogle Scholar
  23. ERIKSSON, B., LARSSON, A., HELGSTRAND, E., JOHANSSON, N.-G. & OBERG, B. (1980). Pyrophosphate analogues as inhibitors of Herpes Simplex Virus type I DNA polymerase. Biochim. biophys. Acta, 607, 53–64.Google Scholar
  24. FIELD, H.J. & WILDY, P. (1978). The pathogenicity of thymidine kinase deficient mutants of Herpes Simplex Virus in mice. J. Hyg., 81, 267–277.Google Scholar
  25. FRANK, K.B., CHIOU, J.-F. & CHENG, Y.-C. (1984b). Interaction of Herpes Simplex Virus-induced DNA polymerase with 9-(1,3-dihydroxy-2-propoxymethyl) guanine triphosphate. J. biol. Chem., 259, 1566–1569.Google Scholar
  26. FRANK, K.B., DERSE, D.D., BASTOW, K.F. & CHENG, Y.C. (1984). Novel interaction of aphidicolin with Herpes Simplex Virus DNA polymerase and polymerase-associated exonuclease. J. biol. Chem. (in press).Google Scholar
  27. HUSZAR, D. & BACHETTI, S. (1981). Partial purification and characterization of the ribonucleotide reductase induced by Herpes Simplex Virus infection of mammalian cells. J. Virol., 37, 580–588.Google Scholar
  28. KNOPF, K.W. (1979). Properties of Herpes Simplex Virus DNA polymerase and characterization of its associated exonuclease activity. Eur. J. Biochem., 98, 231–244.PubMedCrossRefGoogle Scholar
  29. LANGELIER, Y. & BUTTIN, G. (1981). Characterization of ribonucleotide reductase induction in BHK-21/C13 Syrian hamster cell line upon infection by Herpes Simplex Virus (HSV). J. Gen. Virol., 57, 21–31.Google Scholar
  30. LANGELIER, Y., DECHAMPS, M. & BUTTIN, G. (1978). Analysis of dCMP deaminase and CDP reductase levels in hamster cells infected by Herpes Simplex Virus. J. Virol., 26, 547–553.Google Scholar
  31. LANIUNEN, H., GRASLUND, A. & THELANDER, L. (1982). Induction of a new ribonucleotide reductase after infection of mouse L cells with Pseudorabies virus. J. Virol., 41, 893–900.Google Scholar
  32. LARDER, B.A., DERSE, D., CHENG, Y.-C. & DARBY, G. (1983). Properties of purified enzymes induced by pathogenic drug-resistant mutants of Herpes Simplex Virus. Evidence for virus variants expressing normal DNA polymerase and altered thymidine kinase. J. biol. Chem., 258, 2027–2033.Google Scholar
  33. LEMASTER, S. & ROIZMAN, B. (1980). Herpes Simplex Virus Phosphoproteins II. Characterization of the virion protein kinase and of the polypeptides phosphorylated in the virion. J. Virol., 35, 798–811.Google Scholar
  34. LIN, J.-C., SMITH, M.C., CHENG, Y.-C. & PAGANO, J.S. (1983). Epstein-Barr Virus: Inhibition of replication by three new drugs. Science, 221, 578–579.Google Scholar
  35. LOPEZ, C., WANTANABI, K.A. & FOX, J.J. (1980). 2′-Fluoro-5-Iodo-Aracytosine, a potent and selective antiherpes agent. Antimicrob. Agents Chemother., 17, 803–806.Google Scholar
  36. MAR, E.-C., PATEL, P.C., CHENG, Y.-C., FOX, J.J., WANTANABE, K.A. & HUANG, E.-S. (1984). Effects of certain nucleoside analogues on human cytomegalovirus replication in vitro. J. Gen. Virol., 65, 47–53.Google Scholar
  37. NAHMIAS, A.J., DOWDLE, W.R. & SCHINAZI, R.F. (1981). The Human Herpesviruses: An Interdisciplinary Perspective. New York: Elsevier.Google Scholar
  38. NUTTER, L.M., GRILL, S.P. & CHENG, Y.-C. (1984). Can ribonucleotide reductase (RR) be considered as an effective target for developing antiherpes simplex virus type II (HSV-2) compounds? Biochem. Pharm. (in press).Google Scholar
  39. OGURO, M., SUZUKI-HORI, C., NAGANO, H., MANO, Y. & IKEGAMI, S. (1979). The mode of inhibitory action by aphidicolin on Eukaryotic DNA polymerase. Eur. J. Biochem., 97, 603–607.Google Scholar
  40. OSTRANDER, M. & CHENG, Y.-C. (1980). Properties of Herpes Simplex Virus type I and type II DNA polymerase. Biochim. biophys. Acta., 609, 232–245.Google Scholar
  41. PEDRALI-NOY, G. & SPADARI, S. (1980). Mechanism of Inhibition of Herpes Simplex Virus and Vaccinia Virus DNA polymerases by aphidicolin, a highly specific inhibitor of DNA replication in eucaryotes. J. Virol., 36, 457–464.Google Scholar
  42. PONCE de LEON, M., EISENBERG, R.J. & COHEN, G.H. (1977). Ribonucleotide reductase from Herpes Simplex Virus (types I and II) infected and uninfected KB cells: Properties of the partially purified enzymes. J. Gen. Virol., 36, 163–173.Google Scholar
  43. PRUSOFF, W.H., LIN, T.-S., MANCINI, W.R., OTTO, M.J., SIEGEL, S.A. & LEE, J.J. (1983). Overview of the Possible Targets for Viral Chemotherapy. In Targets for the Design of Antiviral Agents. E. De Clercq & R.T. Walker (eds), pp. 1, New York & London: Plenum Press.Google Scholar
  44. PURIFOY, D.J.M. & POWELL, K.L. (1976). DNA-Binding Proteins Induced by Herpes Simplex Virus Type II in HEP-2 Cells. J. Virol., 19, 717–731.Google Scholar
  45. ROIZMAN, B. (1983). The Herpesviruses, 2. New York: Plenum Press.CrossRefGoogle Scholar
  46. WADE, J.C., NEWTON, B., McLAREN, C., FLOURNOY, N., KEENEY, R.E. & MEYERS, J.D. (1982). Intravenous acyclovir to treat Mucocutaneous Herpes Simplex Virus infection after marrow transplantation. Ann. intern. Med., 96, 265–269.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • Y. Cheng
    • 1
  • K. Bastow
  • K. Frank
  • L. Nutter
  • J. -F. Chiou
  • S. Grill
  1. 1.Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel HillNorth CarolinaUSA

Personalised recommendations