Skip to main content

Abstract

Viruses as a whole are important pathogens. They have also been found to have a close association with certain human malignancies. Five types of herpesviruses were identified to be the causative agents in human diseases. They are herpes simplex virus (HSV) type 1, HSV-2, cytomegalovirus (CMV), Epstein Barr virus (EBV) and varicella zoster virus (VZV). These are DNA viruses capable of inducing biochemical changes in infected cells, which in most cases are triggered by virus induced or coded enzymes or proteins (Nahmias et al., 1981; Roizman, 1983). Several enzymes involved in DNA synthesis are known to be specified by some or all types of herpesvirus. A summary of these identified enzymes and the primary reactions they catalyze (Lemaster & Roizman, 1980; Blue & Stobbs, 1981; Cheng et al., 1982) is presented in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AVERETT, D.R., LUBBERG, C., ELION, G.B. & SPECTOR, T. (1983). Ribonucleotide reductase induced by Herpes Simplex Type I Virus. Characterization of a distinct enzyme. J. biol. Chem., 258, 9831–9838.

    Google Scholar 

  • BACCHETTI, S., EVELEGH, M.J., MUIRHEAD, B., SARTORI, C.S. & HUSZAR, D. (1984). Immunological Characterization of Herpes Simplex Virus Type I and II. Polypeptide(s) involved in viral ribonucleotide reductase activity. J. Virol., 49, 591–593.

    Google Scholar 

  • BASTOW, K.F., DERSE, D.D. & CHENG, Y.-C. (1983). Susceptibility of phosphonoformic acid-resistant Herpes Simplex Virus variants to arabinosylnucleosides and aphidicolin. Antimicrob. Agents. Chemother., 23, 914–917.

    Google Scholar 

  • BLUE, W.T. & STOBBS, D.G. (1981). Isolation of a protein kinase induced by Herpes Simplex Virus Type I. J. Virol., 38, 383–388.

    Google Scholar 

  • BRUTLAG, D. & KORNBERG, A. (1972). Enzymatic synthesis of deoxyribonucleic acid. XXVI. A proofreading function for the 3′-5′ exonuclease activity in deoxyribonucleic acid polymerase. J. biol. Chem., 247, 241–248.

    Google Scholar 

  • BURNS, W.H., SARSAL, R., SANTOS, G.W., LASKIN, O.L., LIETMAN, P.S., McLAREN, C. & BARRY, D.W. (1982). Isolation and characterization of resistant Herpes Simplex Virus after acyclovir therapy. Lancet, 421–423.

    Google Scholar 

  • CHENG, Y.-C. (1977). A rational approach to the development of antiviral chemotherapy: Alternative substrates of Herpes Simplex Virus Type I and Type II thymidine kinase. Ann. N.Y. Acad. Sci., 18, 594–598.

    Article  Google Scholar 

  • CHENG, Y.-C. (1981). Molecular basis and pharmacological consideration of selective antiherpetic agent. In Herpetic Eye Diseases. Herausgegeban von R. Sundmacher (ed.), pp. 237–246, Munchen: J.F. Bergmann Verlag.

    Google Scholar 

  • CHENG, Y.-C. (1983). HSV Thymidine Kinase dependent antiviral agent. In Antiviral Drugs and Interferon: The Molecular Basis of Their Activity. Y. Becker (ed.) (in press).

    Google Scholar 

  • CHENG, Y.-C. & DERSE, D. (1981). Approaches and limitations in the development of selective antiherpes virus agents based on virus specified enzymes. In The Medicinal Chemistry Symposium 1981. J.B. Thomas (ed.), Amsterdam/New York/Oxford: Elsevier/North Holland (in press).

    Google Scholar 

  • CHENG, Y.-C., GRILL, S., DERSE, D., CHEN, J.-Y., CARADONNA, S.J. & CONNER, K. (1981). Mode of action of Phosphonoformate as an antiherpes simplex agent. Biochim. biophys. Acta., 652, 90–98.

    Google Scholar 

  • CHENG, Y.-C., NAKAYAMA, K., DERSE, D., BASTOW, K., RUTH, J., TAN, R.S., DUTSCHMAN, G., CARADONNA, S.J. & GRILL, S. (1982). Herpes virus specified enzymes: properties, physiological roles, and pharmacological implications. In: Herpesvirus, Clinical, Pharmacological and Basic Aspects, H. Shiota, Y.-C. Cheng & W.H. Prusoff (eds) pp. 47–56, Amsterdam/Oxford/Princeton: Excerpta Medica.

    Google Scholar 

  • COEN, D.M., FURMAN, P.A., ASCHMAN, D.P. & SCHAFFER, P.A. (1983). Mutations in the Herpes Simplex Virus DNA polymerase gene conferring hypersensitivity to aphidicolon. Nuc. Acids Res., 11, 5287–5297.

    Google Scholar 

  • COHEN, G.H. (1972). Ribonucleotide reductase activity of synchronized KB cells infected with Herpes Simplex Virus. J. Virol., 9, 408–418.

    PubMed  CAS  PubMed Central  Google Scholar 

  • COHEN, G.H., FACTOR, M.N. & PONCE de LEON, M. (1974). Inhibition of Herpes Simplex Virus type II replication by thymidine. J. Virol., 14, 20–25.

    Google Scholar 

  • CRUMPACKER, C.S., SCHNIPPER, I.E., MARLOWE, S.I., KOWALSKY, P.N., HERSHEY, B.J. & LEVIN, M.J. (1982). Resistance to antiviral drugs of Herpes Simplex Virus isolated from a patient treated with acyclovir. N. Engl. J. Med., 306, 343–346.

    Google Scholar 

  • DARBY, G. & FIELD, H.J. (1984). Latency and acquired resistance — problems in chemotherapy of herpes infections. Pharmac. Ther., 23, 217–225.

    Google Scholar 

  • DARBY, G., FIELD, H.J. & SALISBURY, S.A. (1981). Altered substrate specificity of Herpes Simplex Virus thymidine kinase confers acyclovir-resistance. Nature, 289, 81–83.

    Google Scholar 

  • DERSE, D.D., BASTOW, K.F. & CHENG, Y.-C. (1982). Characterization of the DNA polymerases induced by a group of Herpes Simplex Virus type I variants selected for growth in the presence of phosphonoformic acid. J. biol. Chem., 257, 10251–10260.

    Google Scholar 

  • DERSE, D.D. & CHENG, Y.-C. (1981). Herpes Simplex Virus type I DNA polymerase. Kinetic properties of the associate 3′-5′ exonuclease activity and its role in araAMP incorporation. J. biol. Chem., 256, 8525–8530.

    Google Scholar 

  • DERSE, D.D., CHENG, Y.-C., FURMAN, P.A., ST. CLAIR, M.H. & ELION, G.B. (1981). Inhibition of purified human and Herpes Simplex Virus-induced DNA polymerase by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function. J. biol. Chem., 256, 11447–11451.

    Google Scholar 

  • DUTIA, B.M. (1983). Ribonucleotide reductase induced by Herpes Simplex Virus has a virus-specified constituent. J. Gen. Virol., 64, 513–521.

    Article  PubMed  CAS  Google Scholar 

  • ERIKSSON, B., LARSSON, A., HELGSTRAND, E., JOHANSSON, N.-G. & OBERG, B. (1980). Pyrophosphate analogues as inhibitors of Herpes Simplex Virus type I DNA polymerase. Biochim. biophys. Acta, 607, 53–64.

    Google Scholar 

  • FIELD, H.J. & WILDY, P. (1978). The pathogenicity of thymidine kinase deficient mutants of Herpes Simplex Virus in mice. J. Hyg., 81, 267–277.

    Google Scholar 

  • FRANK, K.B., CHIOU, J.-F. & CHENG, Y.-C. (1984b). Interaction of Herpes Simplex Virus-induced DNA polymerase with 9-(1,3-dihydroxy-2-propoxymethyl) guanine triphosphate. J. biol. Chem., 259, 1566–1569.

    Google Scholar 

  • FRANK, K.B., DERSE, D.D., BASTOW, K.F. & CHENG, Y.C. (1984). Novel interaction of aphidicolin with Herpes Simplex Virus DNA polymerase and polymerase-associated exonuclease. J. biol. Chem. (in press).

    Google Scholar 

  • HUSZAR, D. & BACHETTI, S. (1981). Partial purification and characterization of the ribonucleotide reductase induced by Herpes Simplex Virus infection of mammalian cells. J. Virol., 37, 580–588.

    Google Scholar 

  • KNOPF, K.W. (1979). Properties of Herpes Simplex Virus DNA polymerase and characterization of its associated exonuclease activity. Eur. J. Biochem., 98, 231–244.

    Article  PubMed  CAS  Google Scholar 

  • LANGELIER, Y. & BUTTIN, G. (1981). Characterization of ribonucleotide reductase induction in BHK-21/C13 Syrian hamster cell line upon infection by Herpes Simplex Virus (HSV). J. Gen. Virol., 57, 21–31.

    Google Scholar 

  • LANGELIER, Y., DECHAMPS, M. & BUTTIN, G. (1978). Analysis of dCMP deaminase and CDP reductase levels in hamster cells infected by Herpes Simplex Virus. J. Virol., 26, 547–553.

    Google Scholar 

  • LANIUNEN, H., GRASLUND, A. & THELANDER, L. (1982). Induction of a new ribonucleotide reductase after infection of mouse L cells with Pseudorabies virus. J. Virol., 41, 893–900.

    Google Scholar 

  • LARDER, B.A., DERSE, D., CHENG, Y.-C. & DARBY, G. (1983). Properties of purified enzymes induced by pathogenic drug-resistant mutants of Herpes Simplex Virus. Evidence for virus variants expressing normal DNA polymerase and altered thymidine kinase. J. biol. Chem., 258, 2027–2033.

    Google Scholar 

  • LEMASTER, S. & ROIZMAN, B. (1980). Herpes Simplex Virus Phosphoproteins II. Characterization of the virion protein kinase and of the polypeptides phosphorylated in the virion. J. Virol., 35, 798–811.

    Google Scholar 

  • LIN, J.-C., SMITH, M.C., CHENG, Y.-C. & PAGANO, J.S. (1983). Epstein-Barr Virus: Inhibition of replication by three new drugs. Science, 221, 578–579.

    Google Scholar 

  • LOPEZ, C., WANTANABI, K.A. & FOX, J.J. (1980). 2′-Fluoro-5-Iodo-Aracytosine, a potent and selective antiherpes agent. Antimicrob. Agents Chemother., 17, 803–806.

    Google Scholar 

  • MAR, E.-C., PATEL, P.C., CHENG, Y.-C., FOX, J.J., WANTANABE, K.A. & HUANG, E.-S. (1984). Effects of certain nucleoside analogues on human cytomegalovirus replication in vitro. J. Gen. Virol., 65, 47–53.

    Google Scholar 

  • NAHMIAS, A.J., DOWDLE, W.R. & SCHINAZI, R.F. (1981). The Human Herpesviruses: An Interdisciplinary Perspective. New York: Elsevier.

    Google Scholar 

  • NUTTER, L.M., GRILL, S.P. & CHENG, Y.-C. (1984). Can ribonucleotide reductase (RR) be considered as an effective target for developing antiherpes simplex virus type II (HSV-2) compounds? Biochem. Pharm. (in press).

    Google Scholar 

  • OGURO, M., SUZUKI-HORI, C., NAGANO, H., MANO, Y. & IKEGAMI, S. (1979). The mode of inhibitory action by aphidicolin on Eukaryotic DNA polymerase. Eur. J. Biochem., 97, 603–607.

    Google Scholar 

  • OSTRANDER, M. & CHENG, Y.-C. (1980). Properties of Herpes Simplex Virus type I and type II DNA polymerase. Biochim. biophys. Acta., 609, 232–245.

    Google Scholar 

  • PEDRALI-NOY, G. & SPADARI, S. (1980). Mechanism of Inhibition of Herpes Simplex Virus and Vaccinia Virus DNA polymerases by aphidicolin, a highly specific inhibitor of DNA replication in eucaryotes. J. Virol., 36, 457–464.

    Google Scholar 

  • PONCE de LEON, M., EISENBERG, R.J. & COHEN, G.H. (1977). Ribonucleotide reductase from Herpes Simplex Virus (types I and II) infected and uninfected KB cells: Properties of the partially purified enzymes. J. Gen. Virol., 36, 163–173.

    Google Scholar 

  • PRUSOFF, W.H., LIN, T.-S., MANCINI, W.R., OTTO, M.J., SIEGEL, S.A. & LEE, J.J. (1983). Overview of the Possible Targets for Viral Chemotherapy. In Targets for the Design of Antiviral Agents. E. De Clercq & R.T. Walker (eds), pp. 1, New York & London: Plenum Press.

    Google Scholar 

  • PURIFOY, D.J.M. & POWELL, K.L. (1976). DNA-Binding Proteins Induced by Herpes Simplex Virus Type II in HEP-2 Cells. J. Virol., 19, 717–731.

    Google Scholar 

  • ROIZMAN, B. (1983). The Herpesviruses, 2. New York: Plenum Press.

    Book  Google Scholar 

  • WADE, J.C., NEWTON, B., McLAREN, C., FLOURNOY, N., KEENEY, R.E. & MEYERS, J.D. (1982). Intravenous acyclovir to treat Mucocutaneous Herpes Simplex Virus infection after marrow transplantation. Ann. intern. Med., 96, 265–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Cheng, Y., Bastow, K., Frank, K., Nutter, L., Chiou, J.F., Grill, S. (1984). Enzymes as antiviral targets. In: Paton, W., Mitchell, J., Turner, P. (eds) IUPHAR 9th International Congress of Pharmacology London 1984. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-17613-7_34

Download citation

Publish with us

Policies and ethics