Advertisement

Structural and regulatory properties of nucleotide binding regulatory N proteins of adenylate cyclase and their effects on hormone receptors

  • L. Birnbaumer
  • J. Codina
  • R. Mattera
  • F. J. Rojas
  • J. D. Hildebrandt
  • W. Rosenthal
  • T. Sunyer

Abstract

The adenylate cyclase (AC) system is responsible for the synthesis of the second messenger cAMP which mediates the effects of many hormones and neurotransmitters on their target tissues. This system is located within the plasma membrane of target cells and is responsible for the vectorial transduction of receptor occupancy by hormones into an altered rate of cyclic AMP synthesis. A complete AC system (Figure 1) responds to both stimulatory and inhibitory hormonal regulation (Cooper, 1982). In addition to receptors (R) and the catalytic unit (C), which actually synthesizes cAMP, an AC system is composed of two N (or G) coupling proteins that upon activation regulate the activity of C (Figure 2).

Keywords

Adenylate Cyclase Adenylyl Cyclase Guanine Nucleotide Regulatory Component Coupling Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AKTORIES, K. & JAKOBS, K.H. (1981). Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes via a- adrenoceptors. FEBS Lett., 130, 235–238.Google Scholar
  2. BERRIE, C.P., BIRDSALL, N.J.M., BURGEN, A.S.V. & HULME, E.C. (1979). Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. biophys. Res. Commun., 87, 1000–1005.Google Scholar
  3. BIRD, S.J. & MAGUIRE, M.E. (1978). The agonist-specific effect of magnesium ion on binding by β-adrenergic receptors in S49 lymphoma cells. Interaction of GTP and magnesium in adenylate cyclase activation. J. biol. Chem., 253, 8826–8834.Google Scholar
  4. BITONTI, A.J., MOSS, J., TANDON, N.N. & VAUGHAN, M. (1980). Prostaglandins increase GTP hydrolysis by membranes from human mononuclear cells. J. biol. Chem., 255, 2026–2029.Google Scholar
  5. BOKOCH, G.M., KATADA, T., NORTHUP, J.K., HEWLETT, E.L. & GILMAN, A.G. (1983). Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. biol. Chem., 258, 2072–2075.Google Scholar
  6. BOKOCH, G.M., KATADA, T., NORTHUP, J.K., UI, M. & GILMAN, A.G. (1984). Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. biol. Chem., 259, 3560–3567.Google Scholar
  7. CASSEL, D. & SALINGER, Z. (1976). Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. biophys. Acta., 452, 538–551.Google Scholar
  8. CERIONE, R.A., CODINA, J., BENOVIC, J.L., LEFKOWITZ, R.J., BIRNBAUMER, L. & CARON, M.C. (1984). Reconstitution of pure components of a hormone responsive adenylate cyclase system: Interactions of the β-adrenergic receptor and the stimulatory nucleotide binding protein (Ns). Biochemistry (in press).Google Scholar
  9. CODINA, J., HILDEBRANDT, J.D., IYENGAR, R., BIRNBAUMER, L., SEKURA, R.D. & MANCLARK, C.R. (1983). Pertussis toxin substrate, the putative Ni of adenylyl cyclases, is an α/β heterodimer regulated by guanine nucleotide and magnesium. Proc. natn. Acad. Sci. U.S.A., 80, 4276–4280.Google Scholar
  10. COOPER, D.M.F. (1982). Bimodal regulation of adenylate cyclase FEBS Lett., 138, 157–163.PubMedCrossRefGoogle Scholar
  11. GILL, D.M. & MEREN, R. (1978). ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis forGoogle Scholar
  12. the activation of adenylate cyclase. Proc. natn. Acad. Sci. U.S.A., 75, 3050–3054.Google Scholar
  13. HILDEBRANDT, J.D. & BIRNBAUMER, L. (1983). Inhibitory regulation of adenylyl cyclase in the absence of stimulatory regulation. Requirements and kinetics of guanine nucleotide induced inhibition of the cyc - S49 adenylyl cyclase. J. biol. Chem., 258, 13141–13147.Google Scholar
  14. HILDEBRANDT, J.D., CODINA, J., RISINGER, R. & BIRNBAUMER, L. (1984). Identification of a γ subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni. J. biol. Chem., 259, 2039–2042.Google Scholar
  15. HILDEBRANDT, J.D., HANOUNE, J. & BIRNBAUMER, L. (1982). Guanine nucleotide inhibition of cyc - S49 mouse lymphoma cell membrane adenylyl cyclase. J. biol. Chem., 257, 14723–14725.Google Scholar
  16. HILDEBRANDT, J.D., SEKURA, R.D., CODINA, J., IYENGAR, R., MANCLARK, C. R. & BIRNBAUMER, L. (1983). Stimulation and inhibition of adenylyl cyclases mediated by distinct proteins. Nature, 302, 706–709.Google Scholar
  17. IYENGAR, R. (1981). Hysteretic activation of adenylyl cyclases. II. Mg ion regulation of the activation of the regulatory component as analyzed by reconstitution J. biol. Chem., 256, 11042–11050.PubMedGoogle Scholar
  18. IYENGAR, R. & BIRNBAUMER, L. (1982). Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides. Proc. natn. Acad. Sci. U.S.A., 79, 5179–5183.Google Scholar
  19. KATADA, T., NORTHUP, J.K., BOKOCH, G.M., UI, M. & GILMAN, A.G. (1984). The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. biol. Chem., 259, 3578–3585.Google Scholar
  20. KATADA, T. & UI, M. (1982). Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. natn. Acad. Sci. U.S.A., 79, 3129–3133.Google Scholar
  21. KOSKI, G. & KLEE, W.A. (1981). Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc. natn. Acad. Sci. U.S.A., 78, 4185–4189.Google Scholar
  22. MANNING, D.R. & GILMAN, A.G. (1983). The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J. biol. Chem., 258, 7059–7063.Google Scholar
  23. NORTHUP, J.K., SMIGEL, M.D. & GILMAN, A.G. (1982). The guanine nucleotide activating site of the regulatory component of adenylate cyclase. J. biol. Chem., 257, 11416–11423.Google Scholar
  24. PFEUFFER, T. (1977). GTP-binding proteins in membranes and the control of adenylate cyclase activity. J. biol. Chem., 252, 7224–7234.PubMedGoogle Scholar
  25. RODBELL, M., KRANS, H.M.J., POHL, S.L. & BIRNBAUMER, L. (1971). The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon. J. biol. Chem., 246, 1872–1876.Google Scholar
  26. ROSS, E.M. & GILMAN, A.G. (1977). Resolution of some components of adenylate cyclase necessary for catalytic activity. J. biol. Chem., 252, 6966–6969.Google Scholar
  27. ROSS, E.M., MAGUIRE, M.E., STURGILL, T.W., BILTONEN, R.L. & GILMAN, A.G. (1977). Relationship between the β-adrenergic receptor and adenylate cyclase. Studies of ligand binding and enzyme activity in purified membranes of S49 lymphoma cells. J. biol. Chem., 252, 5761–5775.Google Scholar
  28. SEAMON, K.B., PADGETT, W. & DALY, J.W. (1981). Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. natn. Acad. Sci. U.S.A., 78, 3363–3367.Google Scholar
  29. STERNWEIS, P.C., NORTHUP, J.K., SMIGEL, M.D. & GILMAN, A.G. (1981). The regulatory component of adenylate cyclase. Purification and properties. J. biol. Chem., 256, 11517–11526.Google Scholar
  30. TSAI, B.S. & LEFKOWITZ, R.J. (1979). Agonist-specific effects of guanine nucleotides on a-adrenergic receptors in human platelets. Mol. Pharmac., 16, 61–68.Google Scholar
  31. WEI, J.W. & SULAKHE, P.V. (1980). Requirement for sulfhydryl groups in the differential effects of magnesium ion and GTP on agonist binding of muscarinic cholinergic receptor sites in rat atrial membrane fraction. Arch. Pharmac., 314, 51–59.Google Scholar
  32. WILLIAMS, L.T., MULLIKIN, D. & LEFKOWITZ, R.J. (1978). Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J. biol. Chem., 253, 2984–2989.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • L. Birnbaumer
    • 1
  • J. Codina
  • R. Mattera
  • F. J. Rojas
  • J. D. Hildebrandt
  • W. Rosenthal
  • T. Sunyer
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations