Advertisement

Chemical modification of nucleotide regulatory proteins catalyzed by bacterial toxins

  • M. Ui
  • T. Katada
  • T. Murayama
  • H. Kurose

Abstract

The membrane receptor-adenylate cyclase consists of three protein components; the receptor protein (R), the adenylate cyclase catalytic unit (C) and the guanine nucleotide-binding regulatory protein (N, G or G/F). N plays a pivotal role as a communicator between agonist (A)-occupied R and C in the following manner (see Limbird, 1981 for review).

Keywords

Adenylate Cyclase Cholera Toxin Pertussis Toxin GTPase Activity Opiate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AKTORIES, K., SCHULTZ, G. & JAKOBS, K.H. (1983a). Islet-activating protein prevents nicotinic acid-induced GTPase stimulation and GTP but not GTPγS-induced adenylate cyclase inhibition in rat adipocytes. FEBS Lett., 56, 88–92.Google Scholar
  2. AKTORIES, K., SCHULTZ, G. & JAKOBS, K.H. (1983b). Adenylate cyclase inhibition and GTPase stimulation by somatostatin in S49 lymphoma cyc- variants are prevented by islet-activating protein. FEBS Lett., 158, 169–173.Google Scholar
  3. BOKOCH, G.M., KATADA, T., NORTHUP, J.K., UI, M. & GILMAN, A.G. (1984). Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. biol. Chem., 259, 3560–3567.Google Scholar
  4. BOKOCH, G.M., KATADA, T., NORTHUP, J.K., HEWLETT, E.L. & GILMAN, A.G. (1983). Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. biol. Chem., 258, 2072–2075.Google Scholar
  5. BURNS, D.L., HEWLETT, E.L., MOSS, J. & VAUGHAN, M. (1983a). Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108–15 cells. J. biol. Chem., 258, 1435–1438.Google Scholar
  6. BURNS, D.L., MOSS, J. & VAUGHAN, M. (1982). Choleragen-stirnulated release of guanyl nucleotides from turkey erythrocyte membranes. J. biol. Chem., 257, 32–34.Google Scholar
  7. BURNS, D.L., MOSS, J. & VAUGHAN, M. (1983b). Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase. J. biol. Chem., 258, 1116–1120.Google Scholar
  8. CODINA. J., HILDEBRANDT, J., IYENGAR, R., BIRNBAUMER, L., SEKURA, R.D. & MANCLARK, C.R. (1983). Pertussis toxin substrate, the putative Ni component of adenylyl cyclase, is an αβ heterodimer regulated by guanine nucleotide and magnesium. Proc. natn. Acad. Sci. U.S.A., 80, 4276–4280.Google Scholar
  9. CRONIN, M.J., HEWLETT, E.L., EVANS, W.S., THORNER, M.O. & ROGOL, A.D. (1984). Human pancreatic tumor growth hormone (GH)-releasing factor and cyclic AMP evoke GH release from anterior pituitary cells: the effects of pertussis toxin, cholera toxin, forskolin, and cycloheximide. Endocrinology, 114, 904–913.Google Scholar
  10. CRONIN, M.J., MYERS, G.A., MACLEOD, R.M. & HEWLETT, E.L. (1983a). Pertussis toxin uncouples dopamine agonist inhibition of prolactin release. Am. J. Physiol., 244, E499–E504.Google Scholar
  11. CRONIN, M.J., ROGOL, A.D., MYERS, G.A. & HEWLETT, E.L. (1983b). Pertussis toxin blocks the somatostatin-induced inhibition of growth hormone release and cyclic AMP accumulation. Endocrinology, 113, 209–215.Google Scholar
  12. DUNLOP, M.E. & LARKINS, R.G. (1983). Enhanced glucose-induced insulin release and endogenous Ca2+ ionophoretic activity in neonatal rat islets followingGoogle Scholar
  13. islet-activating protein. Biochem. biophys. Res. Commun., 112, 684–692.Google Scholar
  14. ELKS, M. L., WATKINS, P. A., MANGANIELLO, V.C., MOSS, J., HEWLETT, E. & VAUGHAN, M. (1983). Selective regulation by pertussis toxin of insulin-induced activation of particttlate cAMP phosphodiesterase activity in 3T3-L1 adipocytes. Biochem. biophys. Res. Commun., 116, 593–598.Google Scholar
  15. ENDOH, M., MARUYAMA, M. & TAIRA, N. (1983). Modification by islet-activating protein of direct and indirect inhibitory actions of adenosine on rat atrial contraction in relation to cyclic nucleotide metabolism. J. Cardiovasc. Pharmac., 5, 131–142.Google Scholar
  16. HAZEKI, O. & UI, M. (1981). Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J. biol. Chem., 256, 2856–2862.Google Scholar
  17. HILDEBRANDT, J.D., SEKURA, R.D., CODINA, J., IYENGAR, R., MANCLARK, C.R. & BIRNBAUMER, L. (1983). Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature, 302, 706–709.Google Scholar
  18. HONMA, M., SATOH, T., TAKEZAWA, J. & UI, M. (1977). An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem. Med., 18, 257–273.Google Scholar
  19. JOOST, H.G. & GÖKE, R. (1984). Effects of islet-activating protein on insulin- and isoprenaline-stimulated glucose transport in isolated rat adipocytes. FEBS Lett., 167, 5–9.Google Scholar
  20. KATADA, T., AMANO, T. & UI, M. (1982). Modulation by islet-activating protein of adenylate cyclase activity in C6 glioma cells. J. biol. Chem., 257, 3739–3746.Google Scholar
  21. KATADA, T., BOKOCH, G.M., NORTHUP, J.K., UI, M. & GILMAN, A.G. (1984a). The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J. biol. Chem., 259, 3568–3577.Google Scholar
  22. KATADA, T., BOKOCH, G.M., SMIGEL, M.D., UI, M. & GILMAN, A.G. (1984b). The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc- and wild type membranes. J. biol. Chem., 259, 3586–3595.Google Scholar
  23. KATADA, T., NORTHUP, J.K., BOKOCH, G.M., UI, M. & GILMAN, A.G. (1984c). The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. biol. Chem., 259, 3578–3585.Google Scholar
  24. KATADA, T., TAMURA, M. & UI, M. (1983). The A-protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of aGoogle Scholar
  25. membrane protein. Archs. Biochem. Biophys., 224, 290–298.Google Scholar
  26. KATADA, T. & UI, M. (1976). Accelerated turnover of blood glucose in pertussis-sensitized rats due to combined actions of endogenous insulin and adrenergic beta-stimulation. Biochim. biophys. Acta, 421, 57–69.Google Scholar
  27. KATADA, T. & UI, M. (1977a). Perfusion of the pancreas isolated from pertussis-sensitized rats: potentiation of insulin secretory responses due to β-adrenergic stimulation. Endocrinology, 101, 1247–1255.Google Scholar
  28. KATADA, T. & UI, M. (1977b). Spontaneous recovery from streptozotocin-induced diabetes in rats pretreated with pertussis vaccine or hydrocortisone. Diabetologia., 13, 521–525.Google Scholar
  29. KATADA, T. & UI, M. (1979a). Islet-activating protein. Enhanced insulin secretion and cyclic AMP accummulation in pancreatic islets due to activation of native calcium ionophore. J. biol. Chem., 254, 469–479.Google Scholar
  30. KATADA, T. & UI, M. (1979b). Effect of in vivo pretreatment of rats with a new protein purified from Bordetella pertussis on in vitro secretion of insulin: role of calcium. Endocrinology, 104, 1822–1827.Google Scholar
  31. KATADA, T. & UI, M. (1980a). Potentiation of insulin secretion by islet-activating protein (IAP) in intraportalislet-transplanted rats. Biomed. Res., 1, 495–501.Google Scholar
  32. KATADA, T. & UI, M. (1980b). Slow interaction of isletactivating protein with pancreatic islets during primary culture to cause reversal of α-adrenergic inhibition of insulin secretion. J. biol. Chem., 255, 9580–9588.Google Scholar
  33. KATADA, T. & UI, M. (1981a). Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J. biol. Chem., 256, 8310–8317.Google Scholar
  34. KATADA, T. & UI, M. (1981b). In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, cyclic AMP accumulation and Ca flux. J. Biochem., 89, 979–990.Google Scholar
  35. KATADA, T. & UI, M. (1982a). Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. natn. Acad. Sci. U.S.A., 79, 3129–3133.Google Scholar
  36. KATADA, T. & UI, M. (1982b). ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. biol. Chem., 257, 7210–7216.Google Scholar
  37. KATHER, H., AKTORIES, K., SCHULTZ, G. & JAKOBS, K.H. (1983). Islet-activating protein discriminates the antilipolytic mechanism of insulin from that of other antilipolytic compounds. FEBS. Lett., 161, 149–152.Google Scholar
  38. KUNO, T., SHIRAKAWA, O. & TANAKA, C. (1983). Selective decrease in the affinity of D2 dopamine receptor for agonist induced by islet-activating protein, pertussis toxin, associated with ADP-ribosylation of the specific membrane protein of bovine striatum. Biochem. biophys. Res. Commun., 115, 325–330.Google Scholar
  39. KUROSE, H., KATADA, T., AMANO, T. & UI, M. (1983). Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J. biol. Chem., 258, 4870–4875.Google Scholar
  40. KUROSE, H. & UI, M. (1983). Functional uncoupling of muscarinic receptors from adenylate cyclase in rat cardiac membranes by the active component of isletactivating protein, pertussis toxin. J. Cyclic Nucleotide Protein Phosphorylation Res., 9 (in press).Google Scholar
  41. LIMBIRD, L.E. (1981). Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem J., 195, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  42. MANNING, D.R., FRASER, B.A., KAHN, R.A. & GILMAN, A.G. (1984). ADP-ribosylation of transducin by islet-activating protein. Identification of asparagine as the site of ADP-ribosylation. J. biol. Chem., 259, 749–756.Google Scholar
  43. MARTINEZ-OLMEDO, M.A. & GARCIA-SAINZ, J.A. (1983). Effect of pertussis toxin on the hormonal regulation of cyclic AMP levels in hamster fat cells. Biochim. biophys. Acta, 760, 215–220.Google Scholar
  44. MORENO, F.J., MILLS, I., GARCIA-SAINZ, J.A. & FAIN, J.N. (1983). Effects of pertussis toxin treatment on the metabolism of rat adipocytes. J. biol. Chem., 258, 10938–10943.Google Scholar
  45. MOSS, J., STANLEY, S.J., BURNS, D.L., HSIA, J.A., YOST, D.A., MEYERS, G.A. & HEWLETT, E.L. (1983). Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J. biol. Chem., 258, 11879–11882.Google Scholar
  46. MURAYAMA, T., KATADA, T. & UI, M. (1983). Guanine nucleotide activation and inhibition of adenylate cyclase as modified by islet-activating protein, pertussis toxin, in mouse 3T3 fibroblasts. Archs. biochem. Biophys., 221, 381–390.Google Scholar
  47. MURAYAMA, T. & UI, M. (1983). Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J. biol. Chem., 258, 3319–3326.Google Scholar
  48. MURAYAMA, T. & UI, M. (1984). [3H]GDP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. Differential susceptibility to two bacterial toxins. J. biol. Chem., 259, 761–769.Google Scholar
  49. NAKAMURA, T. & UI, M. (1983). Suppression of passive cutaneous anaphylaxis by pertussis toxin, an isletactivating protein, as a result of inhibition of histamine release from mast cells. Biochem. Pharmac., 32, 3435–3441.Google Scholar
  50. OLANSKY, L., MYERS, G.A., POHL, S.L. & HEWLETT, E.L. (1983). Promotion of lipolysis in rat adipocytes by pertussis toxin: reversal of endogenous inhibition. Proc. natn. Acad. Sci. U.S.A., 80, 6547–6551.Google Scholar
  51. PUSHPENDRAN, C.K., CORVERA, S. & GARCIA-SAINZ, J.A. (1983). Effect of pertussis toxin on hormonal responsiveness of rat hepatocytes. FEBS Lett., 160, 198–202.Google Scholar
  52. SUMI, T. & UI, M. (1975). Potentiation of the adrenergic beta-receptor-mediated insulin secretion in pertussissensitized rats. Endocrinology, 97, 352–358.Google Scholar
  53. TAMURA, M., NOGIMORI, K., MURAI, S., YAJIMA, M., ITO, K., KATADA, T., UI, M. & ISHII, S. (1982). Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A–B model. Biochemistry, 21, 5516–5522.Google Scholar
  54. TAMURA, M., NOGIMORI, K., YAJIMA, M. ASE, K. & UI, M. (1983). A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J. biol. Chem., 258, 6756–6761.Google Scholar
  55. UI, M. (1983). Islet-activating protein, pertussis toxin, as a novel probe for signaling processes via cell membrane hormone receptors. In Progress and Prospects in Endocrinology. Kondoh, Y. (ed) pp. 51–68, Tokyo: Center for Academic Publications.Google Scholar
  56. UI, M. (1984). Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component (Ni) of adenylate cyclase. Trends in Pharmac. Sci., 5, (in press).Google Scholar
  57. UI, M. & KATADA, T. (1978). A novel action of the ‘islet-activating protein (IAP)’ to modify adrenergic regulation of insulin secretion. In Proinsulin, Insulin, C-Peptide. Baba, S., Kaneko, T. & Yanaihara, N. (eds) pp. 124–131, Amsterdam-Oxford: Excerpta Medica.Google Scholar
  58. UI, M., KATADA, T., MURAYAMA, T. & KUROSE, H. (1984a). Selective blockage by islet-activating protein, pertussis toxin, of negative signal transduction from receptors to adenylate cyclase. In Neurotransmitter Receptors: Mechanisms ofAction and Regulation, Kito, S. et al. (eds) New York: Plenum Publishing Corp. (in press).Google Scholar
  59. UI, M., KATADA, T., MURAYAMA, T., KUROSE, H., YAJIMA, M., TAMURA, M., NAKAMURA, T. & NOGIMORI, K. (1984b). Islet-activating protein, pertussis toxin: a specific uncoupler of receptor-mediated inhibition of adenylate cyclase. In Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Greengard, P. et al. (eds) pp. 145–151, New York: Raven Press.Google Scholar
  60. UI, M., KATADA, T., MURAYAMA, T. & NAKAMURA, T. (1984c). Islet-activating protein, pertussis toxin, as a probe for receptor-mediated signal transductions. In Calcium Regulation in Biochemical Systems, Ebashi, S. et al., (eds) New York: Academic Press (in press).Google Scholar
  61. UI, M., KATADA, T. & YAJIMA, M. (1979). Islet-activating protein in Bordetella pertussis: Purification and mechanism of action. In International Symposium on Pertussis. Manclark, C.R. & Hills, J.C. (eds) pp 166–173, Bethesda: DHEW Publication.Google Scholar
  62. VAN DOP, C., YAMANAKA, G., STEINBERG, F., SEKURA, R.D., MANCLARK, C.R., STRYER, L. & BOURNE, H.R. (1984). ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J. biol. Chem., 259, 23–26.Google Scholar
  63. YAJIMA, M., HOSODA, K., KANBAYASHI, Y., NAKAMURA, T., NOGIMORI, K., NAKASE, Y. & UI, M. (1978a). Islet-activating protein (IAP) in Bordetella pertussis that potentiates insulin secretory responses of rats. Purification and characterization. J. Biochem., 83, 295–303.Google Scholar
  64. YAJIMA, M., HOSODA, K., KANBAYASHI, Y., NAKAMURA, T., TAKAHASHI, I. & UI, M. (1978b). Biological properties of islet-activating protein (IAP) purified from the culture medium of Bordetella pertussis. J. Biochem., 83, 305–312.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • M. Ui
    • 1
  • T. Katada
  • T. Murayama
  • H. Kurose
  1. 1.Department of Physiological ChemistryFaculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan

Personalised recommendations