Inhibitory modulation of adenylate cyclase

  • K. H. Jakobs
  • K. Aktories
  • M. Minuth
  • G. Schultz


The plasma membrane-bound enzyme, adenylate cyclase, serves as a signal transduction system for a wide variety of hormones and neurotransmitters, acting as extracellular messengers in the process of intercellular communication. This signal-generating role of the adenylate cyclase is clearly established for those hormones and neurotransmitters which after interaction with their specific receptors cause an increase in enzyme activity with subsequent increased levels of cyclic AMP acting as the intracellular second messenger (Robinson et al., 1971). Numerous studies on the mechanisms and components involved in the hormone-induced increase in cyclic AMP formation lead to the generally accepted concept that the complete system is composed of at least three distinct subunits, namely the hormone receptor acting as signal discriminator, the catalytic subunit catalyzing the formation of cyclic AMP from ATP, and a guanine nucleotide-binding regulatory component serving as coupler between the hormone-activated receptor and the catalyst (Ross & Gilman, 1980). On the other hand,


Adenylate Cyclase Cholera Toxin Guanine Nucleotide Pertussis Toxin Coupling Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AKTORIES, K., HUNGERER, K.D. , ROBBEL, L. & JAKOBS, K.H. (1984b). In Abstracts, Proc. 9th Int. Congr. Pharmac. London 1984, Basingstoke: Macmillan.Google Scholar
  2. AKTORIES, K., SCHULTZ, G. & JAKOBS, K.H. (1982). Cholera toxin inhibits prostaglandin Ei but not adrenaline-induced stimulation of GTP hydrolysis in human platelet membranes. FEBS Lett., 146, 65–68.Google Scholar
  3. AKTORIES, K., SCHULTZ, G. & JAKOBS, K.H. (1983). Adenylate cyclase inhibition and GTPase stimulation by somatostatin in S49 lymphoma cyc- variants are prevented by islet-activating protein. FEBS Lett., 158, 169–173.Google Scholar
  4. AKTORIES, K. SCHULTZ, G. & JAKOBS, K.H. (1984a). In Neurotransmitter Receptors: Mechanisms of Action and Regulation, Kitto, S. (ed), New York: Plenum Press (in press).Google Scholar
  5. BOKOCH, G.M., KATADA, T., NORTHUP, J.K., UI, M. & GILMAN, A.G. (1984). Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cylase. J. biol. Chem., 259, 3560–3567.Google Scholar
  6. BRANDT, D.R., ASANO, T., PEDERSEN, S.E. & ROSS, E.M. (1983). Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity. Biochemisty, 22, 4357–4362.Google Scholar
  7. CASSEL, D. & PFEUFFER, T. (1978). Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. natn. Acad. Sci. U.S.A., 75, 2669–2673.Google Scholar
  8. CASSEL, D. & SELINGER, Z. (1977). Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. natn. Acad. Sci. U.S.A., 74, 3307–3311.Google Scholar
  9. CASSEL, D. & SELINGER, Z. (1978). Mechanism of adenylate cyclase activation through the β-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proc. natn. Acad. Sci. U.S.A., 75, 4155–4159.Google Scholar
  10. CODINA, J., HILDEBRANDT, J., IYENGAR, R., BIRNBAUMER, L., SEKURA, R.D. & MANCLARK, C.R. (1983). Pertussis toxin substrate, the putative Ni component of adenylyl cyclases, is an αβ heterodimer regulated by guanine nucleotide and magnesium. Proc. natn. Acad. Sci. U.S.A., 80, 4276–4280.Google Scholar
  11. COOPER, D.M.F. (1982). Biomodal regulation of adenylate cyclase. FEBS Lett., 138, 157–163.PubMedCrossRefGoogle Scholar
  12. HILDEBRANDT, J.D., CODINA, J., RISINGER, R. & BIRNBAUMER, L. (1984). Identification of a γ subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni J. biol. Chem., 259, 2039–2042.Google Scholar
  13. HOFFMAN, B.B. & LEFKOWITZ, R.J. (1980). Radioligand studies of adrenergic receptors: New insights into molecular and physiological regulation. Ann. Rev. Pharmac. Toxic., 20, 581–608.Google Scholar
  14. JAKOBS, K.H. (1983). Determination of the turn-off reaction for the epinephrine-inhibited human platelet adenylate cyclase. Eur. J. Biochem., 132, 125–130.PubMedCrossRefGoogle Scholar
  15. JAKOBS. K.H., AKTORIES, K., MINUTH, M. & SCHULTZ, G. (1984d). Inhibition of adenylate cyclase. Adv. Cyclic Nucleotide Res. (in press).Google Scholar
  16. JAKOBS, K.H., AKTORIES, K. & SCHULTZ, G. (1981). Inhibition of adenylate cyclase by hormones and neurotransmitters. Adv. Cyclic Nucleotide Res., 14, 173–187.Google Scholar
  17. JAKOBS, K.H., AKTORIES, K. & SCHULTZ, G. (1984a). Mechanism of pertussis toxin action on the adenylate cyclase system. Inhibition of the turn-on reaction of the inhibitory regulatory site. Eur. J. Biochem., 140, 177–181.Google Scholar
  18. JAKOBS, K.H., AKTORIES, K. & SCHULTZ, G. (1984b). Mechanisms and components involved in adenylate cyclase inhibiton by hormones. Adv. Cyclic Nucleotide Res., 17, 135–143.Google Scholar
  19. JAKOBS, K.H., GEHRING, U., GAUGLER, B., PFEUFFER, T. & SCHULTZ, G. (1983a). Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc- variants of S49 lymphoma cells. Eur. J. Biochem., 130, 605–611.Google Scholar
  20. JAKOBS, K.H., MINUTH, M. & AKTORIES, K. (1984c). Sodium regulation of hormone-sensitive adenylate cyclase. J. Rec. Res. (in press).Google Scholar
  21. JAKOBS, K.H., SAUR, W. & SCHULTZ, G. (1978). Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett., 85, 167–170.Google Scholar
  22. JAKOBS, K.H. & SCHULTZ, G. (1983). Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc- variants. Proc. natn. Acad. Sci. U.S.A., 80, 3899–3902.Google Scholar
  23. JAKOBS, K.H., SCHULTZ, G., GAUGLER, B. & PFEUFFER, T. (1983b). Inhibition of Ns-protein-stimulated human platelet adenylate cyclase by epinephrine and stable GTP analogs. Eur. J. Biochem., 134, 351–354.Google Scholar
  24. KATADA, T., NORTHUP, J.K., BOKOCH, G.M., UI, M. & GILMAN, A.G. (1984). The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. biol. Chem., 259, 3578–3585.Google Scholar
  25. KATADA, T. & UI, M. (1982). Direct modification of the membrane adenylate cyclase system by isletactivating protein due to ADP-ribosylation of a membrane protein. Proc. natn. Acad. Sci. U.S.A., 79, 3129–3133.Google Scholar
  26. LIMBIRD, L.E. & SPECK, J.K. (1983). N-Ethylmaleimide, elevated temperature, and digitonin solubilization eliminate guanine nucleotide but not sodium effects on human platelet α2-adrenergic receptor-agonist interactions. J. Cyclic Nucleotide Prot. Phosphor., 9, 191–201.Google Scholar
  27. MANNING, D.R. & GILMAN, A.G. (1983). The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J. biol. Chem., 258, 7059–7063.Google Scholar
  28. MURAYAMA, T. & UI, M. (1983). Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J. biol. Chem., 258, 3319–3326.Google Scholar
  29. MURAYAMA, T. & UI, M. (1984). [3H]GDP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. Differential susceptibility to two bacterial toxins. J. biol. Chem., 259, 761–769.Google Scholar
  30. NORTHUP, J.K., STERNWEISS, P.C., SMIGEL, M.D., SCHLEIFER, L.S., ROSS, E.M. & GILMAN, A.G. (1980). Purification of the regulatory component of adenylate cyclase. Proc. natn. Acad. Sci. U.S.A., 77, 6816–6520.Google Scholar
  31. PFEUFFER, T. (1977). GTP-binding proteins in membranes and the control of adenylate cyclase activity. J. biol. Chem., 252, 7224–7234.PubMedGoogle Scholar
  32. ROBINSON, G.A., BUTCHER, R.W. & SUTHERLAND, E.W. (1971). Cyclic AMP, New York: Academic Press.Google Scholar
  33. RODBELL, M., BIRNBAUMER, L., POHL, S.L. & KRANS, H.M. (1971). The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J. biol. Chem., 246, 1877–1882.Google Scholar
  34. ROSS, E.M. & GILMAN, A.G. (1980). Biochemical properties of hormone-sensitive adenylate cyclase. A. Rev. Biochem., 49, 533–564.Google Scholar
  35. SEAMON, K.B. & DALY, J.W. (1981). Forskolin: a unique diterpene activator of cyclic AMP generating systems. J. Cyclic Nucleotide Res., 7, 201–224.Google Scholar
  36. SMIGEL, M. KATADA, T., NORTHUP, J.K., BOKOCH, G.M., UI, M. & GILMAN, A.G. (1984). Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity. Adv. Cyclic Nucleotide Res., 17, 1–19.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • K. H. Jakobs
    • 1
  • K. Aktories
    • 1
  • M. Minuth
    • 1
  • G. Schultz
    • 1
  1. 1.Pharmakologisches Institut der Universität HeidelbergUK

Personalised recommendations