Skip to main content
  • 150 Accesses

Abstract

The catecholamine dopamine (3-hydroxytyramine, 4-[2-aminoethyl]-1, 2-benzenediol; 4-[2-aminoethyl]pyrocatechol; α-[3,4-dihydroxyphenyl]-β-aminoethane; 3,4-dihydroxyphenethylamine) is a decarboxylation product of the aromatic amino acid 3,4-dihydroxyphenylanine (DOPA), which is both present in the bloodstream and synthesized from plasma tyrosine within sympathetic neurones and chromaffin cells. In most of these cells, enzymatic machinery exists by which dopamine can be hydroxylated and methylated to form the other catecholamines, noradrenaline and adrenaline (Blaschko, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALCORN, D., BELL, C. & RYAN, G.B. (1983). Ultrastructural evidence for dopamine-containing neurones in the dog renal cortex. J. Anat., 136, 664.

    Google Scholar 

  • BAINES, A.D. & CHAN, W. (1980). Production of urine free dopamine from DOPA; a micropuncture study. Life Sci., 26, 253–259.

    Google Scholar 

  • BARBEAU, A., SOURKES, T.L. & MURPHY, G.F. (1962). In Monoamines et Système Nerveux Centrale. de Ajuriaguerra, J. (ed.) pp. 247–262., Paris: George, Genève & Masson.

    Google Scholar 

  • BARBEAU, A. (1970). Dopamine and disease. Can. med. Ass. J., 103, 824–832.

    PubMed  CAS  PubMed Central  Google Scholar 

  • BARGER, G. & EWINS, A.J. (1910). Some phenolic derivatives of β-phenylethylamine. J. chem. Soc., 97, 2253–2261.

    Google Scholar 

  • BARGER, A.C. & HERD, J.A. (1973). In Handbook of Physiology, Section 8. Orloff, J. & Berliner, R.W. (eds). pp. 249–313, Washington: American Physiological Society.

    Google Scholar 

  • BECK, L. (1965). Histamine as the potential mediator of active reflex dilatation. Fedn Proc., 24, 1298–1310.

    CAS  Google Scholar 

  • BELL, C. (1982a). Benztropine-induced prolongation of responses to vasodilator nerve stimulation in the canine paw pad. Br. J. Pharmac., 76, 231–233.

    Article  CAS  Google Scholar 

  • BELL, C. (1982b). Dopamine as a postganglionic autonomic neurotransmitter. Neuroscience, 7, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • BELL, C. (1983). Vasodilator neurons supplying skin and skeletal muscle of the limbs. J. Auton. Nerv. Sys., 7, 257–262.

    Article  CAS  Google Scholar 

  • BELL, C. & GILLESPIE, J.S. (1981). Dopamine and noradrenaline levels in peripheral tissues of several mammalian species. J. Neurochem., 36, 703–706.

    Google Scholar 

  • BELL C. & KUSHINSKY, R. (1978). Involvement of Uptake1 and Uptake 2 in terminating the cardiovascular activity of noradrenaline in normotensive and genetically

    Google Scholar 

  • hypertensive rats. J. Physiol., 283, 41–51. BELL, C. & LANG, W.J. (1973). Neural dopaminergic vasodilator control in the kidney. Nature New Biol., 246, 27–29.

    Google Scholar 

  • BELL, C. & LANG, W.J. (1974). Vasodilatation in the canine paw pad evoked by brain stimulation or local cooling. J. Physiol., 241, 112P–113P.

    Google Scholar 

  • BELL, C. & LANG, W.J. (1978). Effects of renal dopamine receptor and β-adrenoreceptor blockade on rises in blood angiotensin after haemorrhage, renal ischaemia and frusemide diuresis in the dog. Clin. Sci. mol. Med., 54, 17–23.

    Google Scholar 

  • BELL, C. & LANG, W.J. (1979a). Evidence for dopaminergic vasodilator innervation of the canine paw pad. Br. J. Pharmac., 67, 337–343.

    Google Scholar 

  • BELL, C. & LANG, W.J. (1979b). In Peripheral Dopaminergic Receptors. Imbs, J.-L. & Schwartz, J. (eds) pp. 45–50, Oxford: Pergamon. BELL, C. & LANG, W.J. (1982). In Trends in Autonomic Pharmacology II. Kalsner, S. (ed.) pp. 263–284, Baltimore/Munich: Urban & Schwarzenberg.

    Google Scholar 

  • BELL, C., LANG, W.J. & LASKA, F. (1978a). Dopamine-containing axons supplying the arterio-venous anastomoses of the canine paw pad. J. Neurochem., 31, 1329–1333.

    Google Scholar 

  • BELL, C., LANG, W.J. & LASKA, F. (1978b). Dopamine-containing vasomotor nerves in the dog kidney. J. Neurochem., 31, 77–83.

    Google Scholar 

  • BELL, C., LANG, W.J. & TSILEMANIS, C. (1973). Noncholinergic vasodilation in the canine hind limb evoked by hypothalamic stimulation. Brain Res., 56, 392–395.

    Google Scholar 

  • BELL, C. & McLACHLAN, E.M. (1982). Dopaminergic neurons in sympathetic ganglia of the dog. Proc. Roy. Soc., 215, 175–190.

    Google Scholar 

  • BELL, C. & MULLER, B.D. (1982). Absence of dopamine-β-hydroxylase in some catecholamine-containing sympathetic ganglion cells of the dog: evidence for dopaminergic autonomic neurones. Neurosci. Lett., 31, 31–35.

    Google Scholar 

  • BELL, C. & STUBBS, A. (1978). Localization of vasodilator dopamine receptors in the canine hindlimb. Br. J. Pharmac., 64, 253–257.

    Google Scholar 

  • BELL, C. & ROME, A. (1984). Pharmacological investigations of the vasodilator nerves supplying the duck’s foot. Br. J. Pharmac. (in press).

    Google Scholar 

  • BERTLER, A., CARLSSON, A. & ROSENGREN, E. (1956). Release by reserpine of catecholamines from rabbits’ hearts. Naturwissenschaften, 43, 521.

    Google Scholar 

  • BERTLER, A. & ROSENGREN, E. (1959). Occurrence and distribution of dopamine in brain and other tissues. Experientia, 15, 10–11.

    Google Scholar 

  • BLASCHKO, H. (1939). The specific action of l-dopa decarboxylase. J. Physiol., 96, 50P–51P.

    CAS  Google Scholar 

  • BLASCHKO, H. (1959). The development of current concepts of catecholamine formation. Pharmac. Rev., 11, 307–316.

    CAS  Google Scholar 

  • BRODY, M.J. & SHAFFER, R.A. (1970). Distribution of vasodilator nerves in the canine hindlimb. Am. J. Physiol., 218, 470–474.

    Google Scholar 

  • CARLSSON, A. (1966). Pharmacological depletion of catecholamine stores. Pharmac. Rev., 18, 541–549.

    CAS  Google Scholar 

  • CARLSSON, A., LINDQVIST, M. & MAGNUSSON, T. (1957). 3,4-Hydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180, 1200.

    Google Scholar 

  • CARLSSON, A., LINDQVIST, M., MAGNUSSON, T. & WALDECK, B. (1958). On the presence of 3-hydroxytryptamine in brain. Science, 127, 471.

    Google Scholar 

  • CARLSSON, A. & WALDECK B. (1958). A fluorometric method for the determination of dopamine (3-hydroxytyramine). Acta physiol. scand., 44, 293–298.

    Google Scholar 

  • CASS, R. & SPRIGGS, T.L.B. (1961). Tissue amine levels and sympathetic blockade after guanethidine and bretylium. Br. J. Pharmac., 17, 442–450.

    Google Scholar 

  • CHAPMAN, B.J., HORN, N.M., MUNDAY, K.A. & ROBERTSON, M.J. (1980). The actions of dopamine and of sulpiride on regional blood flows in the rat kidney. J. Physiol., 298, 437–452.

    Google Scholar 

  • CHAPMAN, B.J., HORN, N.M. & ROBERTSON, M.J. (1982). Renal blood-flow changes during renal nerve stimulation in rats treated with β-adrenergic and dopaminergic blockers. J. Physiol., 325, 67–77.

    Google Scholar 

  • CLARK, B.J. & MENNINGER, K. (1980). Peripheral dopamine receptors. Circulation Res., 46 (Suppl), I59–I63.

    Google Scholar 

  • COHEN, S. & DiMARINO, A.J. (1976). Mechanism of action of metoclopramide on opossum lower esophageal sphincter muscle. Gastroenterology, 71, 996–998.

    Google Scholar 

  • DAHLSTRÖM, A. & FUXE, K. (1964). A method for the demonstration of monoamine-containing nerve fibres in the central nervous system. Acta physiol. scand., 60, 293–294.

    Google Scholar 

  • DeCARLE, D.J. & CHRISTENSEN, J. (1976). A dopamine receptor in esophageal smooth muscle of the opossum. Gastroenterology, 70, 216–219.

    Google Scholar 

  • DINERSTEIN, R.J., VANNICE, J., HENDERSON, R.C., ROTH, L.J., GOLDBERG, L.I. & HOFFMAN, P.C. (1979). Histofluorescence techniques provide evidence for dopamine-containing neuronal elements in canine kidney. Science, 205, 497–499.

    Google Scholar 

  • DINERSTEIN, R.J., JONES, R.T. & GOLDBERG, L.I. (1983). Evidence for dopamine-containing renal nerves. Fedn. Proc., 42, 3005–3008.

    Google Scholar 

  • DZAU, V.J., SIWECK, L.G. & BARGER, A.C. (1978). Intrarenal dopamine receptors in control of renin release in the conscious dog. Fedn. Proc., 37, 901.

    Google Scholar 

  • EBLE, J.N. (1964). A proposed mechanism for the depressor effect of dopamine in the anesthetized dog. J. Pharmac. exp. Ther., 145, 64–70.

    CAS  Google Scholar 

  • EHRINGER, H. & HORNYKEIWICZ, O. (1960). Verteilung von Noradrenalin und Dopamin (3-hydroxytyramin) in Gehirn des Menschen und ihr verhalten bei Erkrankungen des extrapyramidalen Systems. Klin. Wschr., 38, 1236–1239.

    Google Scholar 

  • ELIASSON, S., LINDGREN, P. & UVÑTAS, B. (1951). Representation in the hypothalamus and the motor cortex in the dog of the sympathetic vasodilator outflow to the skeletal muscles. Acta physiol. scand., 27, 18–37.

    Google Scholar 

  • ERÄNKÖ, O., SOINILA, S. & PÄIVÄRINTA, H. (1980). (eds) Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons. (Advances in Biochemical Psychopharmacology, Vol. 25), New York: Raven Press.

    Google Scholar 

  • FALCK, B. (1962). Observation of the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand., 56, Suppl. 197.

    Google Scholar 

  • GOLDBERG, L.I. (1972). Cardiovascular and renal actions of dopamine: potential clinical implications. Pharmac. Rev., 24, 1–29.

    CAS  Google Scholar 

  • GOLDBERG, L.I. & MUSGRAVE, G.E. (1971). Selective attenuation of dopamine-induced renal vasodilatation by bulbocapnine and apomorphine. Pharmacologist, 13, 227.

    Google Scholar 

  • GOLDBERG, L.I. & WEDER, A.B. (1980). Connections between endogenous dopamine, dopamine receptors and sodium excretion: evidences and hypotheses. Rec. Adv. Clin. Pharmac., 2, 149–166.

    Google Scholar 

  • GOLDBERG, L.I. & YEH, B.K. (1971). Attenuation of dopamine-induced renal vasodilatation in the dog by phenothiazines. Eur. J. Pharmac., 15, 36–40.

    Google Scholar 

  • HAMPTON, I.F.G. (1969). Local acclimatization of the hands to prolonged cold exposure in the antarctic. Br. Antarct. Surv. Bull., 19, 9–56.

    Google Scholar 

  • HENSHAW, R.E., UNDERWOOD, L.S. & CASEY, T.M. (1972). Peripheral thermoregulation: foot temperature in two arctic canines. Science, 175, 988–990.

    Google Scholar 

  • HIRST, G.D.S. (1979). Mechanisms of peristalsis. Br. med. Bull., 35, 263–268.

    PubMed  CAS  Google Scholar 

  • HOFFBRAND, B.I. (1979). (ed.) Postgrad. med. J., 55, Suppl 1, 5–54.

    Google Scholar 

  • HOLZBAUER, M. & VOGT, M. (1956). Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J. Neurochem., 1, 8–11.

    Google Scholar 

  • HOLTZ, P., HEISE, R. & LÜDTKE, K. (1938). Fermentativer Abbau von L-Dioxyphenylalanin (Dopa) durch Niere. Naunyn-Schmiedebergs Arch. Pharmac., 191, 87–118.

    Google Scholar 

  • IMBS, J.-L., SCHMIDT, M. & SCHWARTZ, J. (1975). Effect of dopamine on renin secretion in the anaesthetized dog. Eur. J. Pharmac., 33, 151–157.

    Google Scholar 

  • IMBS, J.-L., SCHMIDT, M., EHRHARDT, J.D. & SCHWARTZ, J. (1979). In Peripheral Dopaminergic Receptors. Imbs, J.-L. & Schwartz, J. (eds) pp. 331–42, Oxford: Pergamon.

    Google Scholar 

  • IMBS, J.-L., SCHMIDT, M. & SCHWARTZ, J. (1981). In Proc. 8th Int. Congr. Nephrol. Zurukzoglu, W.,

    Google Scholar 

  • Papadimitriou, M., Pyrpasopoulos, M., Sion, M. & Zamboulis, C. (eds) pp. 1067–1074, Basel: Karger.

    Google Scholar 

  • JOHANSEN, K. & MILLARD, R.W. (1974). Cold-induced neurogenic vasodilatation in skin of the giant fulmar Macronectes giganteus. Am. J. Physiol., 227, 1232–1235.

    Google Scholar 

  • KATHOLI. (1983). Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am. J. Physiol., 245, F1–F14.

    Google Scholar 

  • KUCHEL, O., CUCHE, J.L., BARBEAU, A., BRECHT, N., BOUCHER, R. & GENEST, J. (1970). In L-Dopa and Parkinsonism. Barbeau, A. & McDowell, F.H., (eds) pp. 293–304, Philadelphia: F.A. Davis Co.

    Google Scholar 

  • LACKOVIĆ, Z. & NEFF, N.H. (1980). Evidence for the existence of peripheral dopaminergic neurons. Brain Res., 193, 289–292.

    Google Scholar 

  • LACKOVIĆ, Z. & RELJA, M. (1983). Evidence for a widely distributed peripheral dopaminergic system. Fedn. Proc., 42, 3000–3004.

    Google Scholar 

  • LANG, W.J., BELL, C., CONWAY, E.L. & PADANYI, R. (1976). Cutaneous and muscular vasodilation in the canine hindlimb evoked by central stimulation. Circulation Res., 38, 560–566.

    Google Scholar 

  • LEE, M.R. (1982). Dopamine and the kidney. Clin. Sci., 62, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • LIDBRINK, P., JONSSON, G. & FUXE, K. (1974). Selective reserpine-resistant accumulation of catecholamines in central dopamine neurones after dopa administration. Brain Res., 67, 439–456.

    Google Scholar 

  • McGREGOR, D.D. (1979). Noncholinergic vasodilator innervation in the feet of ducks and chickens. Am. J. Physiol., 237, H112–H117.

    Google Scholar 

  • McNAY, J.L., McDONALD, R.H. & GOLDBERG, L.I. (1965). Direct renal vasodilatation produced by dopamine in the dog. Circulation Res., 16, 510–517.

    Google Scholar 

  • MANNICH, C. & JACOBSOHN, W. (1910). Uber oxyphenyl-alkylamine und Dioxyphenylalkylamine. Ber. dt. chem. Ges., 43, 189–197.

    Google Scholar 

  • MITCHELL, J.R. & OATES, J.A. (1970). Guanethidine and related agents. 1. Mechanism of selective blockade of adrenergic neurons and its antagonism by drugs. J. Pharmac. exp. Ther., 172, 100–107.

    Google Scholar 

  • MOORE, R. Y. & BLOOM, F.E. (1978). Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann. Rev. Neurosci., 1, 129–169.

    Google Scholar 

  • MOSS, N.G. (1982). Renal function and renal afferent and efferent nerve activity. Am. J. Physiol., 243, F425–F433.

    Google Scholar 

  • MUKHOPADHYAY, A.K. & WEISBRODT, N. (1977). Effect of dopamine on esophageal motor function. Am. J. Physiol., 232, E19–E24.

    Google Scholar 

  • MULLER, B.D., HARRIS, T. & BELL, C. (1984a). Characterization of chromaffin-like cells in the canine sympathetic chain by enzyme immunohistochemistry and quantitation of their distribution. Neuroscience (in press).

    Google Scholar 

  • MULLER, B.D., HARRIS, T., BORRI VOLTATTORNI, C. & BELL, C. (1984b). Distribution of neurones containing

    Google Scholar 

  • dopa decarboxylase and dopamine-β-hydroxylase in sympathetic ganglia of the dog: a quantitative study. Neuroscience, 11, 733-?

    Google Scholar 

  • MURRISH, D.E. & GUARD, C.L. (1976). Cardiovascular adaptations of the giant petrel Macronectes giganteus to the antarctic environment. In Adaptations Within Antarctic Environments. Llano, G.A. (ed.) pp. 511–530, Washington: Smithsonian Institute.

    Google Scholar 

  • NIEL, J.P., GONELLA, J. & ROMAN, C. (1980). Localisation par la technique de marquage à. la péroxydase des corps cellulaires des neurones ortho et parasympathetiques innervant le sphincter oesophagien inférieur du chat. J. Physiol., Paris, 76, 591–599.

    Google Scholar 

  • PICKEL, V.M., JOH, T.H. & REIS, D.J. (1976). Monoamine-synthesizing enzymes in central dopaminergic, noradrenergic and serotonergic neurons. Immunocytochemical localization by light and electron-microscopy. J. Histochem. Cytochem., 24, 792–806.

    Google Scholar 

  • PLETSCHER, A., SHORE, P. & BRODIE, B.B. (1955). Serotonin release as a possible mechanism of reserpine action. Science, 122, 374–375.

    Google Scholar 

  • RATTAN, S. & GOYAL, R.K. (1976). Effect of dopamine on the esophageal smooth muscle in vivo. Gastroenterology, 70, 377–381.

    Google Scholar 

  • ROME, A. & BELL, C. (1983). Catecholamines in the sympathetic nervous system of the domestic fowl. J. Auton. Nerv. Syst., 8, 331–342.

    Google Scholar 

  • SANO, I., GAMO, T., KAKIMOTO, Y., TANIGUCHI, K., TAKESADA, M. & NICHINUMA, K. (1959). Distribution of catechol compounds in human brain. Biochim. biophys. Acta, 32, 586–587.

    Google Scholar 

  • SHIMADA, S., ISHIKAWA, M. & TANAKA, C. (1976). Histochemical mapping of dopamine neurons and fiber pathways in dog mesencephalon. J. comp. Neurol., 168, 533–544.

    Google Scholar 

  • SMITH, A.D. (1973). Mechanisms involved in the release of noradrenaline from sympathetic nerves. Br. med. Bull., 29, 123–129.

    CAS  Google Scholar 

  • SNIDER, S.R. & KUCHEL, O. (1983). Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocr. Rev., 4, 291–309.

    Google Scholar 

  • STEPHENSON, R.K., SOLE, M.J. & BAINES, A.D. (1982). Neural and extraneural catecholamine production by rat kidneys. Am. J. Physiol., 242, F261–F266.

    Google Scholar 

  • TAXI, J. (1979). The chromaffin and chromaffin-like (CCL) cells in the autonomic nervous system. Int. Rev. Cytol., 57, 283–343.

    Article  Google Scholar 

  • VALENZUELA, J.E. (1976). Dopamine as a possible neurotransmitter in gastric relaxation. Gastroenterology, 71, 1019–1022.

    PubMed  CAS  Google Scholar 

  • VAN NEUTEN, J.M., ENNIS, C., HELSEN, L., LADURON, P.M. & JANSSEN, P.A.J. (1978). Inhibition of dopamine receptors in the stomach: an explanation of the gastrokinetic properties of domperidone. Life Sci., 23, 453–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Bell, C. (1984). Dopaminergic nerves. In: Paton, W., Mitchell, J., Turner, P. (eds) IUPHAR 9th International Congress of Pharmacology London 1984. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-17613-7_27

Download citation

Publish with us

Policies and ethics