The catecholamine dopamine (3-hydroxytyramine, 4-[2-aminoethyl]-1, 2-benzenediol; 4-[2-aminoethyl]pyrocatechol; α-[3,4-dihydroxyphenyl]-β-aminoethane; 3,4-dihydroxyphenethylamine) is a decarboxylation product of the aromatic amino acid 3,4-dihydroxyphenylanine (DOPA), which is both present in the bloodstream and synthesized from plasma tyrosine within sympathetic neurones and chromaffin cells. In most of these cells, enzymatic machinery exists by which dopamine can be hydroxylated and methylated to form the other catecholamines, noradrenaline and adrenaline (Blaschko, 1959).


Dopamine Receptor Chromaffin Cell Noradrenergic Neurone Dopamine Antagonist Renal Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALCORN, D., BELL, C. & RYAN, G.B. (1983). Ultrastructural evidence for dopamine-containing neurones in the dog renal cortex. J. Anat., 136, 664.Google Scholar
  2. BAINES, A.D. & CHAN, W. (1980). Production of urine free dopamine from DOPA; a micropuncture study. Life Sci., 26, 253–259.Google Scholar
  3. BARBEAU, A., SOURKES, T.L. & MURPHY, G.F. (1962). In Monoamines et Système Nerveux Centrale. de Ajuriaguerra, J. (ed.) pp. 247–262., Paris: George, Genève & Masson.Google Scholar
  4. BARBEAU, A. (1970). Dopamine and disease. Can. med. Ass. J., 103, 824–832.PubMedPubMedCentralGoogle Scholar
  5. BARGER, G. & EWINS, A.J. (1910). Some phenolic derivatives of β-phenylethylamine. J. chem. Soc., 97, 2253–2261.Google Scholar
  6. BARGER, A.C. & HERD, J.A. (1973). In Handbook of Physiology, Section 8. Orloff, J. & Berliner, R.W. (eds). pp. 249–313, Washington: American Physiological Society.Google Scholar
  7. BECK, L. (1965). Histamine as the potential mediator of active reflex dilatation. Fedn Proc., 24, 1298–1310.Google Scholar
  8. BELL, C. (1982a). Benztropine-induced prolongation of responses to vasodilator nerve stimulation in the canine paw pad. Br. J. Pharmac., 76, 231–233.CrossRefGoogle Scholar
  9. BELL, C. (1982b). Dopamine as a postganglionic autonomic neurotransmitter. Neuroscience, 7, 1–8.PubMedCrossRefGoogle Scholar
  10. BELL, C. (1983). Vasodilator neurons supplying skin and skeletal muscle of the limbs. J. Auton. Nerv. Sys., 7, 257–262.CrossRefGoogle Scholar
  11. BELL, C. & GILLESPIE, J.S. (1981). Dopamine and noradrenaline levels in peripheral tissues of several mammalian species. J. Neurochem., 36, 703–706.Google Scholar
  12. BELL C. & KUSHINSKY, R. (1978). Involvement of Uptake1 and Uptake 2 in terminating the cardiovascular activity of noradrenaline in normotensive and geneticallyGoogle Scholar
  13. hypertensive rats. J. Physiol., 283, 41–51. BELL, C. & LANG, W.J. (1973). Neural dopaminergic vasodilator control in the kidney. Nature New Biol., 246, 27–29.Google Scholar
  14. BELL, C. & LANG, W.J. (1974). Vasodilatation in the canine paw pad evoked by brain stimulation or local cooling. J. Physiol., 241, 112P–113P.Google Scholar
  15. BELL, C. & LANG, W.J. (1978). Effects of renal dopamine receptor and β-adrenoreceptor blockade on rises in blood angiotensin after haemorrhage, renal ischaemia and frusemide diuresis in the dog. Clin. Sci. mol. Med., 54, 17–23.Google Scholar
  16. BELL, C. & LANG, W.J. (1979a). Evidence for dopaminergic vasodilator innervation of the canine paw pad. Br. J. Pharmac., 67, 337–343.Google Scholar
  17. BELL, C. & LANG, W.J. (1979b). In Peripheral Dopaminergic Receptors. Imbs, J.-L. & Schwartz, J. (eds) pp. 45–50, Oxford: Pergamon. BELL, C. & LANG, W.J. (1982). In Trends in Autonomic Pharmacology II. Kalsner, S. (ed.) pp. 263–284, Baltimore/Munich: Urban & Schwarzenberg.Google Scholar
  18. BELL, C., LANG, W.J. & LASKA, F. (1978a). Dopamine-containing axons supplying the arterio-venous anastomoses of the canine paw pad. J. Neurochem., 31, 1329–1333.Google Scholar
  19. BELL, C., LANG, W.J. & LASKA, F. (1978b). Dopamine-containing vasomotor nerves in the dog kidney. J. Neurochem., 31, 77–83.Google Scholar
  20. BELL, C., LANG, W.J. & TSILEMANIS, C. (1973). Noncholinergic vasodilation in the canine hind limb evoked by hypothalamic stimulation. Brain Res., 56, 392–395.Google Scholar
  21. BELL, C. & McLACHLAN, E.M. (1982). Dopaminergic neurons in sympathetic ganglia of the dog. Proc. Roy. Soc., 215, 175–190.Google Scholar
  22. BELL, C. & MULLER, B.D. (1982). Absence of dopamine-β-hydroxylase in some catecholamine-containing sympathetic ganglion cells of the dog: evidence for dopaminergic autonomic neurones. Neurosci. Lett., 31, 31–35.Google Scholar
  23. BELL, C. & STUBBS, A. (1978). Localization of vasodilator dopamine receptors in the canine hindlimb. Br. J. Pharmac., 64, 253–257.Google Scholar
  24. BELL, C. & ROME, A. (1984). Pharmacological investigations of the vasodilator nerves supplying the duck’s foot. Br. J. Pharmac. (in press).Google Scholar
  25. BERTLER, A., CARLSSON, A. & ROSENGREN, E. (1956). Release by reserpine of catecholamines from rabbits’ hearts. Naturwissenschaften, 43, 521.Google Scholar
  26. BERTLER, A. & ROSENGREN, E. (1959). Occurrence and distribution of dopamine in brain and other tissues. Experientia, 15, 10–11.Google Scholar
  27. BLASCHKO, H. (1939). The specific action of l-dopa decarboxylase. J. Physiol., 96, 50P–51P.Google Scholar
  28. BLASCHKO, H. (1959). The development of current concepts of catecholamine formation. Pharmac. Rev., 11, 307–316.Google Scholar
  29. BRODY, M.J. & SHAFFER, R.A. (1970). Distribution of vasodilator nerves in the canine hindlimb. Am. J. Physiol., 218, 470–474.Google Scholar
  30. CARLSSON, A. (1966). Pharmacological depletion of catecholamine stores. Pharmac. Rev., 18, 541–549.Google Scholar
  31. CARLSSON, A., LINDQVIST, M. & MAGNUSSON, T. (1957). 3,4-Hydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180, 1200.Google Scholar
  32. CARLSSON, A., LINDQVIST, M., MAGNUSSON, T. & WALDECK, B. (1958). On the presence of 3-hydroxytryptamine in brain. Science, 127, 471.Google Scholar
  33. CARLSSON, A. & WALDECK B. (1958). A fluorometric method for the determination of dopamine (3-hydroxytyramine). Acta physiol. scand., 44, 293–298.Google Scholar
  34. CASS, R. & SPRIGGS, T.L.B. (1961). Tissue amine levels and sympathetic blockade after guanethidine and bretylium. Br. J. Pharmac., 17, 442–450.Google Scholar
  35. CHAPMAN, B.J., HORN, N.M., MUNDAY, K.A. & ROBERTSON, M.J. (1980). The actions of dopamine and of sulpiride on regional blood flows in the rat kidney. J. Physiol., 298, 437–452.Google Scholar
  36. CHAPMAN, B.J., HORN, N.M. & ROBERTSON, M.J. (1982). Renal blood-flow changes during renal nerve stimulation in rats treated with β-adrenergic and dopaminergic blockers. J. Physiol., 325, 67–77.Google Scholar
  37. CLARK, B.J. & MENNINGER, K. (1980). Peripheral dopamine receptors. Circulation Res., 46 (Suppl), I59–I63.Google Scholar
  38. COHEN, S. & DiMARINO, A.J. (1976). Mechanism of action of metoclopramide on opossum lower esophageal sphincter muscle. Gastroenterology, 71, 996–998.Google Scholar
  39. DAHLSTRÖM, A. & FUXE, K. (1964). A method for the demonstration of monoamine-containing nerve fibres in the central nervous system. Acta physiol. scand., 60, 293–294.Google Scholar
  40. DeCARLE, D.J. & CHRISTENSEN, J. (1976). A dopamine receptor in esophageal smooth muscle of the opossum. Gastroenterology, 70, 216–219.Google Scholar
  41. DINERSTEIN, R.J., VANNICE, J., HENDERSON, R.C., ROTH, L.J., GOLDBERG, L.I. & HOFFMAN, P.C. (1979). Histofluorescence techniques provide evidence for dopamine-containing neuronal elements in canine kidney. Science, 205, 497–499.Google Scholar
  42. DINERSTEIN, R.J., JONES, R.T. & GOLDBERG, L.I. (1983). Evidence for dopamine-containing renal nerves. Fedn. Proc., 42, 3005–3008.Google Scholar
  43. DZAU, V.J., SIWECK, L.G. & BARGER, A.C. (1978). Intrarenal dopamine receptors in control of renin release in the conscious dog. Fedn. Proc., 37, 901.Google Scholar
  44. EBLE, J.N. (1964). A proposed mechanism for the depressor effect of dopamine in the anesthetized dog. J. Pharmac. exp. Ther., 145, 64–70.Google Scholar
  45. EHRINGER, H. & HORNYKEIWICZ, O. (1960). Verteilung von Noradrenalin und Dopamin (3-hydroxytyramin) in Gehirn des Menschen und ihr verhalten bei Erkrankungen des extrapyramidalen Systems. Klin. Wschr., 38, 1236–1239.Google Scholar
  46. ELIASSON, S., LINDGREN, P. & UVÑTAS, B. (1951). Representation in the hypothalamus and the motor cortex in the dog of the sympathetic vasodilator outflow to the skeletal muscles. Acta physiol. scand., 27, 18–37.Google Scholar
  47. ERÄNKÖ, O., SOINILA, S. & PÄIVÄRINTA, H. (1980). (eds) Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons. (Advances in Biochemical Psychopharmacology, Vol. 25), New York: Raven Press.Google Scholar
  48. FALCK, B. (1962). Observation of the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand., 56, Suppl. 197.Google Scholar
  49. GOLDBERG, L.I. (1972). Cardiovascular and renal actions of dopamine: potential clinical implications. Pharmac. Rev., 24, 1–29.Google Scholar
  50. GOLDBERG, L.I. & MUSGRAVE, G.E. (1971). Selective attenuation of dopamine-induced renal vasodilatation by bulbocapnine and apomorphine. Pharmacologist, 13, 227.Google Scholar
  51. GOLDBERG, L.I. & WEDER, A.B. (1980). Connections between endogenous dopamine, dopamine receptors and sodium excretion: evidences and hypotheses. Rec. Adv. Clin. Pharmac., 2, 149–166.Google Scholar
  52. GOLDBERG, L.I. & YEH, B.K. (1971). Attenuation of dopamine-induced renal vasodilatation in the dog by phenothiazines. Eur. J. Pharmac., 15, 36–40.Google Scholar
  53. HAMPTON, I.F.G. (1969). Local acclimatization of the hands to prolonged cold exposure in the antarctic. Br. Antarct. Surv. Bull., 19, 9–56.Google Scholar
  54. HENSHAW, R.E., UNDERWOOD, L.S. & CASEY, T.M. (1972). Peripheral thermoregulation: foot temperature in two arctic canines. Science, 175, 988–990.Google Scholar
  55. HIRST, G.D.S. (1979). Mechanisms of peristalsis. Br. med. Bull., 35, 263–268.PubMedGoogle Scholar
  56. HOFFBRAND, B.I. (1979). (ed.) Postgrad. med. J., 55, Suppl 1, 5–54.Google Scholar
  57. HOLZBAUER, M. & VOGT, M. (1956). Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J. Neurochem., 1, 8–11.Google Scholar
  58. HOLTZ, P., HEISE, R. & LÜDTKE, K. (1938). Fermentativer Abbau von L-Dioxyphenylalanin (Dopa) durch Niere. Naunyn-Schmiedebergs Arch. Pharmac., 191, 87–118.Google Scholar
  59. IMBS, J.-L., SCHMIDT, M. & SCHWARTZ, J. (1975). Effect of dopamine on renin secretion in the anaesthetized dog. Eur. J. Pharmac., 33, 151–157.Google Scholar
  60. IMBS, J.-L., SCHMIDT, M., EHRHARDT, J.D. & SCHWARTZ, J. (1979). In Peripheral Dopaminergic Receptors. Imbs, J.-L. & Schwartz, J. (eds) pp. 331–42, Oxford: Pergamon.Google Scholar
  61. IMBS, J.-L., SCHMIDT, M. & SCHWARTZ, J. (1981). In Proc. 8th Int. Congr. Nephrol. Zurukzoglu, W.,Google Scholar
  62. Papadimitriou, M., Pyrpasopoulos, M., Sion, M. & Zamboulis, C. (eds) pp. 1067–1074, Basel: Karger.Google Scholar
  63. JOHANSEN, K. & MILLARD, R.W. (1974). Cold-induced neurogenic vasodilatation in skin of the giant fulmar Macronectes giganteus. Am. J. Physiol., 227, 1232–1235.Google Scholar
  64. KATHOLI. (1983). Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am. J. Physiol., 245, F1–F14.Google Scholar
  65. KUCHEL, O., CUCHE, J.L., BARBEAU, A., BRECHT, N., BOUCHER, R. & GENEST, J. (1970). In L-Dopa and Parkinsonism. Barbeau, A. & McDowell, F.H., (eds) pp. 293–304, Philadelphia: F.A. Davis Co.Google Scholar
  66. LACKOVIĆ, Z. & NEFF, N.H. (1980). Evidence for the existence of peripheral dopaminergic neurons. Brain Res., 193, 289–292.Google Scholar
  67. LACKOVIĆ, Z. & RELJA, M. (1983). Evidence for a widely distributed peripheral dopaminergic system. Fedn. Proc., 42, 3000–3004.Google Scholar
  68. LANG, W.J., BELL, C., CONWAY, E.L. & PADANYI, R. (1976). Cutaneous and muscular vasodilation in the canine hindlimb evoked by central stimulation. Circulation Res., 38, 560–566.Google Scholar
  69. LEE, M.R. (1982). Dopamine and the kidney. Clin. Sci., 62, 439–448.PubMedCrossRefGoogle Scholar
  70. LIDBRINK, P., JONSSON, G. & FUXE, K. (1974). Selective reserpine-resistant accumulation of catecholamines in central dopamine neurones after dopa administration. Brain Res., 67, 439–456.Google Scholar
  71. McGREGOR, D.D. (1979). Noncholinergic vasodilator innervation in the feet of ducks and chickens. Am. J. Physiol., 237, H112–H117.Google Scholar
  72. McNAY, J.L., McDONALD, R.H. & GOLDBERG, L.I. (1965). Direct renal vasodilatation produced by dopamine in the dog. Circulation Res., 16, 510–517.Google Scholar
  73. MANNICH, C. & JACOBSOHN, W. (1910). Uber oxyphenyl-alkylamine und Dioxyphenylalkylamine. Ber. dt. chem. Ges., 43, 189–197.Google Scholar
  74. MITCHELL, J.R. & OATES, J.A. (1970). Guanethidine and related agents. 1. Mechanism of selective blockade of adrenergic neurons and its antagonism by drugs. J. Pharmac. exp. Ther., 172, 100–107.Google Scholar
  75. MOORE, R. Y. & BLOOM, F.E. (1978). Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann. Rev. Neurosci., 1, 129–169.Google Scholar
  76. MOSS, N.G. (1982). Renal function and renal afferent and efferent nerve activity. Am. J. Physiol., 243, F425–F433.Google Scholar
  77. MUKHOPADHYAY, A.K. & WEISBRODT, N. (1977). Effect of dopamine on esophageal motor function. Am. J. Physiol., 232, E19–E24.Google Scholar
  78. MULLER, B.D., HARRIS, T. & BELL, C. (1984a). Characterization of chromaffin-like cells in the canine sympathetic chain by enzyme immunohistochemistry and quantitation of their distribution. Neuroscience (in press).Google Scholar
  79. MULLER, B.D., HARRIS, T., BORRI VOLTATTORNI, C. & BELL, C. (1984b). Distribution of neurones containingGoogle Scholar
  80. dopa decarboxylase and dopamine-β-hydroxylase in sympathetic ganglia of the dog: a quantitative study. Neuroscience, 11, 733-?Google Scholar
  81. MURRISH, D.E. & GUARD, C.L. (1976). Cardiovascular adaptations of the giant petrel Macronectes giganteus to the antarctic environment. In Adaptations Within Antarctic Environments. Llano, G.A. (ed.) pp. 511–530, Washington: Smithsonian Institute.Google Scholar
  82. NIEL, J.P., GONELLA, J. & ROMAN, C. (1980). Localisation par la technique de marquage à. la péroxydase des corps cellulaires des neurones ortho et parasympathetiques innervant le sphincter oesophagien inférieur du chat. J. Physiol., Paris, 76, 591–599.Google Scholar
  83. PICKEL, V.M., JOH, T.H. & REIS, D.J. (1976). Monoamine-synthesizing enzymes in central dopaminergic, noradrenergic and serotonergic neurons. Immunocytochemical localization by light and electron-microscopy. J. Histochem. Cytochem., 24, 792–806.Google Scholar
  84. PLETSCHER, A., SHORE, P. & BRODIE, B.B. (1955). Serotonin release as a possible mechanism of reserpine action. Science, 122, 374–375.Google Scholar
  85. RATTAN, S. & GOYAL, R.K. (1976). Effect of dopamine on the esophageal smooth muscle in vivo. Gastroenterology, 70, 377–381.Google Scholar
  86. ROME, A. & BELL, C. (1983). Catecholamines in the sympathetic nervous system of the domestic fowl. J. Auton. Nerv. Syst., 8, 331–342.Google Scholar
  87. SANO, I., GAMO, T., KAKIMOTO, Y., TANIGUCHI, K., TAKESADA, M. & NICHINUMA, K. (1959). Distribution of catechol compounds in human brain. Biochim. biophys. Acta, 32, 586–587.Google Scholar
  88. SHIMADA, S., ISHIKAWA, M. & TANAKA, C. (1976). Histochemical mapping of dopamine neurons and fiber pathways in dog mesencephalon. J. comp. Neurol., 168, 533–544.Google Scholar
  89. SMITH, A.D. (1973). Mechanisms involved in the release of noradrenaline from sympathetic nerves. Br. med. Bull., 29, 123–129.Google Scholar
  90. SNIDER, S.R. & KUCHEL, O. (1983). Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocr. Rev., 4, 291–309.Google Scholar
  91. STEPHENSON, R.K., SOLE, M.J. & BAINES, A.D. (1982). Neural and extraneural catecholamine production by rat kidneys. Am. J. Physiol., 242, F261–F266.Google Scholar
  92. TAXI, J. (1979). The chromaffin and chromaffin-like (CCL) cells in the autonomic nervous system. Int. Rev. Cytol., 57, 283–343.CrossRefGoogle Scholar
  93. VALENZUELA, J.E. (1976). Dopamine as a possible neurotransmitter in gastric relaxation. Gastroenterology, 71, 1019–1022.PubMedGoogle Scholar
  94. VAN NEUTEN, J.M., ENNIS, C., HELSEN, L., LADURON, P.M. & JANSSEN, P.A.J. (1978). Inhibition of dopamine receptors in the stomach: an explanation of the gastrokinetic properties of domperidone. Life Sci., 23, 453–458.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • C. Bell
    • 1
  1. 1.Department of PhysiologyUniversity of Melbourne Medical CentreParkvilleAustralia

Personalised recommendations