Advertisement

Abstract

The structure and function of the insulin receptor has been the subject of intensive research effort in the last few years. Progress in this field has been so rapid that any review will be out of date almost before it is written. It is a mark of the rate at which work on this subject has progressed that, while almost nothing was known about the receptor five years ago (Kahn, 1979), several laboratories have now purified the receptor to near homogeneity, and a clear and consistent picture of the structure of the receptor, and the way in which insulin acts through the receptor, has been built up.

Keywords

Insulin Receptor Disulphide Bond Insulin Binding Photoaffinity Labelling Negative Cooperativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVRUCH, J., NEMENOFF, R.A., BLACKSHEAR, P.J., PIERCE, M.W. & OSATHANOUDH, R. (1982). Insulinstimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes. Comparison to EGF-stimulated phosphorylation. J. biol. Chem., 257, 15162–15166.PubMedGoogle Scholar
  2. BARON, M.D. & SONKSEN, P.H. (1982). Characterisation of two insulin binding components of rat liver plasma membranes. Bioscience Reports, 2, 785–793.PubMedCrossRefGoogle Scholar
  3. BARON, M.D. & SÜNKSEN, P.H. (1983). Elucidation of the quaternary structure of the insulin receptor. Biochem. J., 212, 79–84.PubMedPubMedCentralCrossRefGoogle Scholar
  4. BARON, M.D., WISHER, M.H., THAMM, P.M., SAUNDERS, D.J., BRANDENBURG, D. & SÜNKSEN, P.H. (1981). Hydrodynamic characterisation of the photoaffinity labelled insulin receptor solubilised in Triton X-100. Biochemistry, 20, 4156–4161.PubMedCrossRefGoogle Scholar
  5. BERHANU, P. & OLEFSKY, J.M. (1982). Photoaffinity labelling of insulin receptors in viable cultured lymphocytes. Diabetes, 31, 410–417.PubMedCrossRefGoogle Scholar
  6. BLUNDELL, T., DODSON, G., HODGKIN, D. & MERCOLA, D. (1972). Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv. Protein Chem., 26, 279–402.CrossRefGoogle Scholar
  7. BRANDENBURG, D., DIACONESCU, C., FRANCIS, T., FRIESER, H-J., GATTNER, H-G., NAITHANI, V.K., NOWAH, J., SHERMUTZKI, W., SCHRIFF, E., SHUTTLER, A., SMITH, D., WEIMANN, J. & WOLLMER, A. (1973). Molecular basis of insulin action: recent results of chemical modification and structure-function studies. Excerpta med., Series No. 413, 163–168.Google Scholar
  8. CLARK, S. & HARRISON, L.C. (1982). Insulin binding leads to the formation of covalent (-S-S-) hormone receptor complexes. J. biol. Chem., 257, 12239–12244.PubMedGoogle Scholar
  9. CLARK, S. & HARRISON, L.C. (1983). Disulphide exchange between insulin and its receptor. J. biol. Chem., 258, 11434–11437.PubMedGoogle Scholar
  10. COBB, M.H. & ROSEN, O.M. (1983). Description of a protein kinase derived from insulin-treated 3T3-L1 cells that catalyses the phosphorylation of ribosomal protein S6 and casein. J. biol. Chem., 258, 12472–12481.PubMedGoogle Scholar
  11. CORIN, R.E. & DONNER, D.B. (1982). Insulin receptors convert to a higher affinity state subsequent to hormone binding J. biol. Chem., 257, 104–110.PubMedGoogle Scholar
  12. CUATRECASAS, P. (1971). Perturbation of the insulin receptor of isolated fat cells with proteolytic enzymes. J. biol. Chem., 246, 6522–6531.Google Scholar
  13. CUATRECASAS, P. (1972a). Isolation of insulin receptor of liver and fat cell membranes. Proc. natn. Acad. Sci. U.S.A., 69, 318–322.CrossRefGoogle Scholar
  14. CUATRECASAS, P. (1972b). Affinity chromatography and purification of the insulin receptor of liver cell membranes. Proc. natn. Acad. Sci. U.S.A., 69, 1277–1281.CrossRefGoogle Scholar
  15. CUATRECASAS, P. & PARIKH, I. (1974). Insulin receptors. Meth. Enzymol., 34, 653–670.PubMedCrossRefGoogle Scholar
  16. CUATRECASAS, P. & TELL, G.P.E. (1973). Insulin-like action of Concanavalin A and wheat germ agglutinin. Proc. natn. Acad. Sci. U.S.A., 70, 485–489.CrossRefGoogle Scholar
  17. DE MEYTS, P., BIANCO, A.R. & ROTH, J. (1976). Site-site interactions among insulin receptors: characterisation of the negative cooperativity. J. biol. Chem., 251, 1877–1888.Google Scholar
  18. DE MEYTS, P., ROTH, J., NEVILLE, D.M., GAVIN, J.R. & LESNIAK, M.A. (1973). Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem. biophys. Res. Commun., 55, 154–161.PubMedCrossRefGoogle Scholar
  19. DEUTSCH, P.J., WAN, C.F., ROSEN, O.M. & RUBIN, C.S. (1983). Latent insulin receptors and possible receptor precursors in 3T3-L1 adipocytes. Proc. natn. Acad. Sci. U.S.A., 80, 133–136.CrossRefGoogle Scholar
  20. FLIER, J.S., KAHN, C.R., ROTH, J. & BAR, R.S. (1975). Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science, 190, 63–65.PubMedCrossRefGoogle Scholar
  21. FUJITA-YAMAGUCHI, Y. (1984). Characterisation of purified insulin receptor subunits. J. biol. Chem., 259, 1206–1211.PubMedGoogle Scholar
  22. FUJITA-YAMAGUCHI, Y., CHOI, S., SAKAMOTO, Y. & ITAKURA, K. (1983). Purification of insulin receptor with full binding activity. J. biol. Chem., 258, 5045–5049.PubMedGoogle Scholar
  23. GAZZANO, H., KOWALSKI, A., FEHLMAN, M. & VAN OBBERGHEN, E. (1983). Two different protein kinase activities associated with the insulin receptor. Biochem. J., 216, 575–582.PubMedPubMedCentralCrossRefGoogle Scholar
  24. GINSBERG, B.H. (1977). In Biochemical Actions of Hormones. G. Litwack (ed.) vol 4, pp. 313–349. New York: Academic Press.CrossRefGoogle Scholar
  25. GINSBERG, B.H., COHEN, R.M., KAHN, C.R. & ROTH, J. (1978). Properties and partial purification of the detergent solubilised insulin receptor. Biochim. biophys. Acta, 542, 88–100.PubMedCrossRefGoogle Scholar
  26. GINSBERG, B.H., KAHN, C.R., ROTH, J. & DE MEYTS, P. (1976). Insulin induced dissociation of its receptor into subunits. Biochem. biophys. Res. Commun., 73, 1068–1074.PubMedCrossRefGoogle Scholar
  27. HARMON, J.T., HEDO, J.A. & KAHN, C.R. (1983). Characterisation of a membrane regulator of insulin-receptor affinity. J. biol. Chem., 258, 6875–6881.PubMedGoogle Scholar
  28. HARMON, J.T., KAHN, C.R., KEMPNER, E.S. & SCHLEGEL, W. (1980). Characterisation of the insulin receptor in its membrane environment by radiation inactivation. J. biol. Chem., 255, 3412–3419.PubMedGoogle Scholar
  29. HARMON, J.T., KEMPNER, E.S. & KAHN, C.R. (1981). Demonstration by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes. J. biol. Chem., 256, 7719–7722.PubMedGoogle Scholar
  30. HARRISON, L.C., BILLINGTON, T., EAST, I.J., NICHOLS, R.J. & CLARK, S. (1978). The effect of solubilisation on properties of insulin receptor of human placental membranes. Endocrinology., 102, 1485–1495.PubMedCrossRefGoogle Scholar
  31. HARRISON, L.C. & ITIN, A. (1980). Purification of the insulin receptor from human placenta by chromatography on immobilised wheat germ lectin and receptor antibody. J. biol. Chem., 255, 12066–12072.PubMedGoogle Scholar
  32. HEDO, J.A., HARRISON, L.C. & ROTH, J. (1981). Binding of insulin receptors to lectins, evidence for common carbohydrate determinants on several membrane receptors. Biochemistry, 20, 3385–3393.PubMedCrossRefGoogle Scholar
  33. HEDO, J.A., KAHN, C.R., KAGASAKI, M., YAMADA, K.M. & KASUGA, M. (1983). Biosynthesis and glycosylation of the insulin receptor. J. biol. Chem., 258, 10020–10026.PubMedGoogle Scholar
  34. HEDO, J.A., KASUGA, M., VAN OBBERGHEN, E., ROTH, J. & KAHN, C.R. (1980). Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labelling: evidence for heterogeneity. Proc. natn. Acad. Sci. U.S.A., 78, 4791–4795.CrossRefGoogle Scholar
  35. HEIDENREICH, K.A., ZAHNISER, N.R., BERHANU, P., BRANDENBURG, D. & OLEFSKY, J.M. (1983). Structural differences between insulin receptors in the brain and peripheral target tissues. J. biol. Chem., 258, 8527–8530.PubMedGoogle Scholar
  36. HOUSLAY, M. & HEYWORTH, C. (1983). Insulin: in search of a mechanism. Trends in Biochem. Sci., 8, 449–452.CrossRefGoogle Scholar
  37. JACOBS, S. & CUATRECASAS, P. (1980). Disulphide reduction converts the insulin receptor of human placenta to a low affinity form. J. clin. Invest., 66, 1424–1427.PubMedPubMedCentralCrossRefGoogle Scholar
  38. JACOBS, S., HAZUM, E., SHECTER, Y. & CUATRECASAS, P. (1979). Insulin receptor: covalent labelling and identification of subunits. Proc. natn. Acad. Sci. U.S.A., 76, 4918–4921.CrossRefGoogle Scholar
  39. JACOBS, S., SHECTER, Y., BISSELL, K. & CUATRECASAS, P. (1977). Purification and properties of insulin receptors from rat liver membranes. Biochem. biophys. Res. Commun., 77, 981–988.PubMedCrossRefGoogle Scholar
  40. JARETT, L., SCHWEIZER, J.B. & SMITH, R.M. (1980). Insulin receptors: differences in structural organisation on adipocyte and liver plasma membranes. Science, 210, 1127–1128.PubMedCrossRefGoogle Scholar
  41. KAHN, C.R. (1979). What is the molecular basis for the action of insulin? Trends in Biochem. Sci., 4, 263–266.CrossRefGoogle Scholar
  42. KAHN, C.R., BAIRD, K.L., FLIER, J.S., GRUNFELD, C., HARMON, J.T., HARRISON, L.C., KARLSSON, F.A., KASUGA, M., KING, G.L., LANG, U.C., PODSKALNY, J.M. & VAN OBBERGHEN, E. (1981). Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Progress in Hormone Research, 37, 477–538.PubMedGoogle Scholar
  43. KAHN, C.R., FREYCHET, P., ROTH, J. & NEVILLE, D.M. (1974). Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J. biol. Chem., 249, 2249–2257.PubMedGoogle Scholar
  44. KASUGA, M., FUJITA-YAMAGUCHI, Y., BLITHE, D.L., WHITE, M.F. & KAHN, C.R. (1983). Characterisation of the insulin receptor kinase purified from human placental membranes. J. biol. Chem., 258, 10973–10980.PubMedGoogle Scholar
  45. KASUGA, M., HEDO, J.A., YAMADA, K.M. & KAHN, C.R. (1982a). The structure of the insulin receptor and its subunits. Evidence for multiple non-reduced forms and a 210K possible proreceptor. J. biol. Chem., 257, 10392–10399.PubMedGoogle Scholar
  46. KASUGA, M., KAHN, C.R., HEDO, J.A., VAN OBBERGHEN, E. & YAMADA, K.M. (1981). Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradation. Proc. natn. Acad. Sci. U.S.A., 78, 6917–6921.CrossRefGoogle Scholar
  47. KASUGA, M., KARLSSON, F.A. & KAHN, C.R. (1982b). Insulin stimulates the phosphorylation of the 95,000 dalton subunit of its own receptor. Science, 215, 185–186.PubMedCrossRefGoogle Scholar
  48. KASUGA, M, ZICK, Y., BLITHE, D.L., CRETTAZ, M. & KAHN, C.R. (1982c). Insulin stimulates Tyr phosphorylation of insulin receptor in a cell-free system. Nature, 298, 667–669.PubMedCrossRefGoogle Scholar
  49. KASUGA, M., ZICK, Y., BLITHE, D.L., KARLSSON, F.A., HARING, H.U. & KAHN, C.R. (1982d). Insulin stimulation of the phosphorylation of the β-subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. J. biol. Chem., 257, 9891–9894.PubMedGoogle Scholar
  50. KRUPP, M.N. & LIVINGSTON, J.N. (1979). Effects of insulin on insulin-binding components extracted from rat fat cell membranes. Nature, 278, 61–62.PubMedCrossRefGoogle Scholar
  51. MASSAGUE, J., PILCH, P.F. & CZECH, M.P. (1980). Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc. natn. Acad. Sci. U.S.A., 77, 7137–7141.CrossRefGoogle Scholar
  52. MASSAGUE, J., PILCH, P.F. & CZECH, M.P. (1981). A unique proteolytic cleavage site on the β-subunit of the insulin receptor. J. biol. Chem., 256, 3182–3190.PubMedGoogle Scholar
  53. MATURO, J.M. & HOLLENBURG, M.D. (1978). Insulin receptor interaction with non-receptor glycoprotein from liver cell membranes. Proc. natn. Acad. Sci. U.S.A., 75, 3070–3074.CrossRefGoogle Scholar
  54. PETRUZZELLI, L.M., GANGULY, S., SMITH, C.J., COBB, M.H., RUBIN, C.S. & ROSEN, O.M. (1982). Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta. Proc. natn. Acad. Sci. U.S.A., 79, 6792–6796.CrossRefGoogle Scholar
  55. PILCH, P.F. & CZECH, M.P. (1979). Interaction of crosslinking agents with the insulin effector system of isolated fat cells. J. biol. Chem., 254, 3375–3381.PubMedGoogle Scholar
  56. PILCH, P.F. & CZECH, M.P. (1980). Hormone binding alters the conformation of the insulin receptor. Science, 210, 1152–1153.PubMedCrossRefGoogle Scholar
  57. POLLET, R.J., STANDAERT, M.L. & HAASE, B.A. (1977). Insulin binding to the human lymphocyte receptor — evaluation of negative cooperativity. J. biol. Chem., 252, 5828–5834.PubMedGoogle Scholar
  58. PULLEN, R.A., LINDSAY, D.G., WOOD, S.P., TICKLE, I.J., BLUNDELL, T.L., WOLLMER, A., KRAIL, G., BRANDENBURG, D., ZAHN, H., GLIEMANN, J. & GAMMELTOFT, S. (1976). Receptor binding region of insulin. Nature, 259, 369–373.PubMedCrossRefGoogle Scholar
  59. REES-JONES, R.W., HEDO, J.A., ZICK, Y. & ROTH, J. (1983). Insulin-stimulated phosphorylation of the insulin receptor precursor. Biochem. biophys. Res. Commun., 116, 417–422.PubMedCrossRefGoogle Scholar
  60. ROTH, R.A. & CASSELL, D.J. (1983). Insulin receptor: evidence that it is a kinase. Science, 219, 299–301.PubMedCrossRefGoogle Scholar
  61. SCHWEITZER, J.B., SMITH, R.M. &JARETT, L. (1980). Differences in organisational structure of insulin receptors on rat adipocyte and liver plasma membranes: role of disulphide bonds. Proc. nam. Acad. Sci. U.S.A., 77, 4692–4696.CrossRefGoogle Scholar
  62. SIEGEL, T.W., GANGULY, S., JACOBS, S., ROSEN, O.M. & RUBIN, C.S. (1981). Purification and properties of human placental insulin receptor. J. biol. Chem., 256, 9266–9273.PubMedGoogle Scholar
  63. SIMPSON, I.A. & REDO, J.A. (1984). Insulin receptor phosphorylation may not be a prerequisite for acute insulin action. Science, 223, 1301–1304.PubMedCrossRefGoogle Scholar
  64. TATNELL, M.A., JONES, R.H., WILLEY, K.P., SCHUTTLER, A. & BRANDENBURG, D. (1983). Evidence concerning the mechanism of insulin-receptor interaction and the structure of the insulin receptor from the biological properties of covalently linked insulin dimers. Biochem. J., 216, 687–694.PubMedPubMedCentralCrossRefGoogle Scholar
  65. VAN OBBERGHEN, E., KASUGA, M., LE CAM, A., HEDO, J.A., ITIN, A. & HARRISON, L.C. (1981). Biosynthetic labelling of insulin receptor: studies of the subunits in cultured human IM-9 lymphocytes. Proc. natn. Acad. Sci. U.S.A., 78, 1052–1056.CrossRefGoogle Scholar
  66. WALAAS, O., WALAAS, E., LYSTAD, E., ALERTSEN, A.R. & HORN, R.S. (1979). The effect of insulin and guanosine nucleotides on protein phosphorylations by sarcolemma membranes from skeletal muscle. Mol. Cell. End., 16, 45–55.CrossRefGoogle Scholar
  67. WANG, C-C., HEDO, J.A., KAHN, C.R., SAUNDERS, D.J., THAMM, P.M. & BRANDENBURG, D. (1982). Photoreactive insulin derivatives. Comparison of biological activity and labelling properties of three analogues in isolated rat adipocytes. Diabetes, 31, 1068–1076.PubMedCrossRefGoogle Scholar
  68. WISHER, M.H., BARON, M.D., JONES, R.H., SONKSEN, P.H., SAUNDERS, D.J., THAMM, P. & BRANDENBURG, D. (1980). Photoreactive insulin analogues used to characterise the insulin receptor. Biochem. biophys. Res. Commun., 92, 492–498.PubMedCrossRefGoogle Scholar
  69. YIP, C.C. & MOULE, M.L. (1983). Insulin receptor: its subunit structure as determined by photoaffinity labelling. Fedn Proc.Google Scholar
  70. YIP, C.C., MOULE, M.L. & YEUNG, C.W.T. (1980). Characterisation of insulin receptor subunits in brain and other tissues by photoaffinity labelling. Biochem. biophys. Res. Commun., 96, 1671–1678.PubMedCrossRefGoogle Scholar
  71. YIP, C.C., MOULE, M.L. & YEUNG, C.W.T. (1982). Subunit structure of insulin receptor of rat adipocytes as demonstrated by photoaffinity labelling. Biochemistry, 21, 2940–2945.PubMedCrossRefGoogle Scholar
  72. YIP, C.C., YEUNG, C.W.T. & MOULE, M.L. (1978). Photoaffinity labelling of insulin receptor of rat adipocyte plasma membrane. J. biol. Chem., 253, 1743–1745.PubMedGoogle Scholar
  73. ZICK, Y., KASUGA, M., KAHN, C.R. & ROTH, J. (1983). Characterisation of insulin-mediated phosphorylation of the insulin receptor in a cell-free system. J. biol. Chem, 258, 75–80.PubMedGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • M. D. Baron
    • 1
  1. 1.Dept of Clinical BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations