Advertisement

Activity of single potassium channels recorded from single isolated visceral and vascular smooth muscle cells

  • T. B. Bolton
  • C. D. Benham
  • R. J. Lang
  • T. Takewaki
Chapter

Abstract

Relaxation of smooth muscle implies some existing tension. This is present presumably because the internal free ionised calcium concentration [Ca2+]; exceeds some threshold level causing activation of the myosin light chain kinase or leiotonin systems and actin-myosin interaction (Perry & Grand, 1979; Hartshorne, 1981). Relaxation of this existing tension may surely occur in a wide variety of ways; one obvious possibility is that [Ca2+]i is reduced and, probably after a slight delay, tension then declines.

Keywords

Myosin Light Chain Kinase Membrane Patch Physiological Salt Solution Rabbit Jejunum Action Potential Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAUER, V. & RUSKO, J. (1982). TEA-sensitive potassium conductance changes induced by α1-adrenoceptor and ATP-receptor activation in guinea pig taenia coli. Gen. Physiol. Biophys., 2, 89–102.Google Scholar
  2. BENHAM, C.D. & BOLTON, T.B. (1983). Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum. J. Physiol., 340, 469–486.PubMedPubMedCentralCrossRefGoogle Scholar
  3. BENHAM, C.D., BOLTON, T.B. & LANG, R.J. (1983). Patch clamp studies of the action of K+ channel blockers on two types of K+ channel in dispersed smooth muscle cells of rabbit jejunum. J. Physiol., 341, 23P.Google Scholar
  4. BENHAM, C.D., BOLTON, T.B., LANG, R.J. & TAKEWAKI, T. (1984). Calcium dependent K+ channels in dispersed intestinal and arterial smooth muscle cells of guinea pigs and rabbits studied by the patch-clamp technique. J. Physiol., 350, 51P.Google Scholar
  5. BOLTON, T.B. (1979). Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Revs. 59, 606–718.Google Scholar
  6. BOLTON, T.B., LANG, R.J. & TAKEWAKI, T. (1984a). Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea pig anterior mesenteric artery. J. Physiol., 351, 549–572.PubMedPubMedCentralCrossRefGoogle Scholar
  7. BOLTON, T.B., LANG, R.J., TAKEWAKI, T. & BENHAM, C.D. (1984b). Patch and whole-cell voltage clamp of single mammalian visceral and vascular smooth muscle cells. Experientia. (in press).Google Scholar
  8. BÜLBRING, E. & TOMITA, T. (1969a). Effect of calcium, barium, and manganese on the action of adrenaline in the smooth muscle of the guinea pig taenia coli. Proc. Roy. Soc. B., 172, 121–136.CrossRefGoogle Scholar
  9. BÜLBRING, E. & TOMITA, T. (1969b). Increase in membrane conductance by adrenaline in the smooth muscle of guinea pig taenia coli. Proc. Roy. Soc. B., 172, 89–102.CrossRefGoogle Scholar
  10. EL SHARKAWY, T.Y. & DANIEL, E.E. (1975). The electrophysiological basis of the motor inhibitory effect of adrenaline on rabbit small intestinal smooth muscle. Can. J. Physiol. Pharmac., 554, 446–456.Google Scholar
  11. GONELLA, M.J. (1965). Variation de l’activité électrique spontanée du duodénum de lapin avec le lieu de dérivation. C.R. Acad. Sci. Paris., 260, 5362–5365.Google Scholar
  12. HAMILL, O.P., MARTY, A., NEHER, E., SAKMANN, B. & SIGWORTH, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch., 391, 85–100.PubMedCrossRefGoogle Scholar
  13. HARTSHORNE, D.J. (1981). Biochemistry of the contractile process in smooth muscle In Physiology of the Gastrointestinal Tract, Johnson. L.R. (ed.), pp 243–267, New York: Raven Press.Google Scholar
  14. ITO, Y., KURIYAMA, H. & SAKAMOTO, Y. (1970). Effects of tetraethylammonium chloride on the membrane activity of guinea pig stomach smooth muscle. J. Physiol., 21, 445–460.CrossRefGoogle Scholar
  15. ITO, Y., KITAMURA, K. & KURIYAMA, H. (1979). Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J. Physiol., 294, 595–611.PubMedPubMedCentralCrossRefGoogle Scholar
  16. KARASHIMA, T. (1981). Effects of vasopressin on smooth muscle cells of guinea pig mesenteric vessels. Br. J. Pharmac., 72, 673–684.CrossRefGoogle Scholar
  17. KROEGER, E.A. & MARSHALL, J.M. (1973). β-adrenergic effects on rat myometrium: mechanisms of membrane hyperpolarization. Am. J. Physiol., 225, 1339–1345.PubMedGoogle Scholar
  18. KURIYAMA, H. (1970). Effects of ions and drugs on the electrical activity of smooth muscle, In Smooth Muscle Bülbring, E., Brading, A.F., Jones, A.W. & Tomita, T. (eds.) pp 366–395. London: E. Arnold.Google Scholar
  19. MAGARIBUCHI, T. & OSA, T. (1971). Effects of catecholamines on electrical and mechanical activities of the pregnant mouse myometrium. Jap. J. Physiol., 21, 627–643.CrossRefGoogle Scholar
  20. NEHER, E., SAKMANN, B., & STEINBACH, J.H. (1978). The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers Arch., 375, 219–228.PubMedCrossRefGoogle Scholar
  21. PERRY, S.V. & GRAND, R.J.A. (1979). Mechanisms of contraction and the specialized protein components of smooth muscle. Br. med. Bull., 35, 219–226.PubMedGoogle Scholar
  22. SAIDA, K. & VAN BREEMEN, C. (1983). A possible Ca2+-induced Ca2+ release mechanism mediated by norepinephrine in vascular smooth muscle. Pfiügers Arch., 397, 166–167.CrossRefGoogle Scholar
  23. SAIDA, K. & VAN BREEMEN, C. (1984). Characteristics of the norepinephrine-sensitive Ca2+ store in vascular smooth muscle. Blood Vessels, 21, 43–52.PubMedGoogle Scholar
  24. SAKAMOTO, Y. & KURIYAMA, H. (1970). The relationship between the electrical and mechanical activity of the guinea pig stomach. Jap. J. Physiol., 20, 640–656.CrossRefGoogle Scholar
  25. STANFIELD, P.R. (1983). Tetraethylammonium ions and the potassium permeability of excitable cells. Rev. Physiol. Biochem. Pharmacol., 97, 1–67.PubMedGoogle Scholar
  26. TAKATA, Y. & KURIYAMA, H. (1980). ATP-induced hyperpolarization of smooth muscle cells of the guinea pig coronary artery. J. Pharm. expt. Ther., 212, 519–526.Google Scholar
  27. TOMITA, T. & WATANABE, H. (1973). A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea pig taenia coli. J. Physiol., 231, 167–177.PubMedPubMedCentralCrossRefGoogle Scholar
  28. WEIGEL, R.J., CONNOR, J.A. & PROSSER, C.L. (1979). Two roles of calcium during the spike in circular muscle of small intestine in cat. Am. J. Physiol., 237, C247–C256.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • T. B. Bolton
    • 1
  • C. D. Benham
  • R. J. Lang
  • T. Takewaki
  1. 1.Department of PharmacologySt George’s Hospital Medical SchoolLondonUK

Personalised recommendations