Advertisement

Pharmacological approaches to neuropeptide function: substance P

  • L. L. Iversen
Chapter

Abstract

More than three dozen small peptides are known to occur in neurones in the mammalian nervous system (Iversen, 1983). Each of the neuropeptides may represent a novel chemical messenger, and as a class the neuropeptides offer considerable potential for the development of a new era of psychopharmacology. At the moment, however, our knowledge of peptide pharmacology remains rudimentary. The present review will summarize some recent developments in understanding the biochemical pharmacology of one neuropeptide, substance P (SP). The concepts and experimental approaches may prove applicable more generally to other neuropeptides.

Keywords

Angiotensin Converting Enzyme Activity Mammalian Spinal Cord Mesocortical Dopamine Bovine Spinal Cord Mammalian Tachykinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARREGUI, A., EMSON, P.C. & SPOKES, E.G. (1978). Angiotensin-converting enzyme in substantia nigra: reduction of activity in Huntington’s disease and after intrastriatal kainic acid in rats. Eur. J. Pharmac., 52, 121–124.CrossRefGoogle Scholar
  2. BANNON, M.J., ELLIOTT, P.J., ALPERT, J.E., GOEDERT, M., IVERSEN, S.D. & IVERSEN, L.L. (1983). Role of endogenous substance P in stress induced activation of mesocortical dopamine neurones. Nature, 306, 791–792.PubMedCrossRefGoogle Scholar
  3. BEAUJOUAN, J.C., TORRENS, Y., VIGER, A. & GLOWINSKI, J. (1984). A new type of tachykinin binding site in the rat brain characterized by specific binding of a labelled eledoisin derivative. Mol. Pharmac. (in press).Google Scholar
  4. BERRIDGE, M.J., DOWNES, C.P. & HANLEY, M.R. (1982). Lithium simplifies agonist dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J., 206, 587–595.PubMedPubMedCentralCrossRefGoogle Scholar
  5. BLUMBERG, S., TEICHBERG, V.I., CHARLI, J.L., HERSH, L.B. & McKELVY, J.F. (1980). Cleavage of substance P analogs: implications for studies of the substance P receptor. Biochem. biophys. Res. Commun., 90, 347–354.CrossRefGoogle Scholar
  6. CASCIERI, M.A., BULL, H., MUMFORD, R.A., PATCHETT, A.A., THORNBERRY, N. & LIANG, T. (1984a). Carboxyl-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmac., 25, 287–293.Google Scholar
  7. CASCIERI, M.A., CHICCHI, G.G. & LIANG, T. (1984b). Demonstration of two distinct tachykinin receptors in rat brain cortex. J. biol. Chem. (in press).Google Scholar
  8. CASCIERI, M.A. & LIANG, T. (1983). Characterization of the substance P receptor in rat brain cortex membranes and the inhibition of radioligand binding by guanine nucleotides. J. biol. Chem., 258, 5158–5164.PubMedGoogle Scholar
  9. CASCIERI, M.A. & LIANG, T. (1984). Binding of 12I-Bolton Hunter conjugaied eledoisin to rat brain cortex membranes-evidence for two classes of tachykinin receptors in the mammalian central nervous systems. Life Science, 35, 179–184.CrossRefGoogle Scholar
  10. CHANG, M.M., LEEMAN, S.E. (1970). Isolation of a sialogogue peptide from bovine hypothalamic tissue and its characterization as substance P. J. biol. Chem., 245, 4784–4790.PubMedGoogle Scholar
  11. CHANG, M.M., LEEMAN, S.E. & NIALL, H.D. (1971). Amino acid sequence of substance P. Nature New Biol., 232, 86–87.PubMedCrossRefGoogle Scholar
  12. DE CARO, G., MASSI, M. & MICOSSI, L.G. (1980). Modifications of drinking behaviour and of arterial blood pressure induced by tachykinins in rats and pigeons. Psychopharmacology., 68, 243–247.PubMedCrossRefGoogle Scholar
  13. EISON, A.S., IVERSEN, S.D., SANDBERG, E.B., WATSON, S.P., HANLEY, M.R. & IVERSEN, L.L. (1982). A novel substance P analogue, DiMe-C7: evidence for stability in the rat brain and prolonged central actions. Science (Wash. DC), 215, 188–190.CrossRefGoogle Scholar
  14. ERSPAMER, G.F., ERSPAMER, V. & PIGGINELLI, D. (1980). Parallel bioassay of physalaemin and kassinin, a tachykinin dodecapeptide from the skin of the African frog Kassina seregalensis. Naunyn-Schmiedeberg’s Arch Pharmac., 311, 61–65.CrossRefGoogle Scholar
  15. ERSPAMER, V. (1981). The tachykinin peptide family: present status and perspectives. Trends Neurosci, 4, 267–269.CrossRefGoogle Scholar
  16. FITZSIMMONS, J.T. & EVERED, M.D. (1978). Eledoisin, Substance P and related peptides: intracranial dipsogens in the pigeon and antidipsogens in the rat. Brain Research, 105, 533–542.CrossRefGoogle Scholar
  17. HANLEY, M.R., LEE, C.M., JONES, L.M. & MICHELL, R.H. (1980a). Similar effects of substance P and related peptides on salivation and on phosphatidylinositol turnover in rat salivary glands. Mol. Pharmac., 18, 78–83.Google Scholar
  18. HANLEY, M.R., SANDBERG, B.E.B., LEE, C.M., IVERSEN, L.L., BRUNDISH, D.E. & WADE, R. (1980b). Specific binding of 3H-substance P to rat brain membranes. Nature, 286, 810–812.PubMedCrossRefGoogle Scholar
  19. HYLDEN, J.L.K. & WILCOX, G.L. (1983). Pharmacological characterization of substance P-induced nociception in mice: modulation by opioid and noradrenergic agonists at the spinal level. J. Pharmac. exp. Ther., 226, 398–404.Google Scholar
  20. IVERSEN, L.L. (1983). Non-opioid neuropeptides in mammalian CNS, A. Rev. Pharmac. Toxicol., 23, 1–27.CrossRefGoogle Scholar
  21. IVERSEN, L.L., NAGY, J.I., NINKOVIC, M. & HUNT, S.P. (1983). Roles of neuropeptides in pain mechanisms. In Ramon y Cajal’s Contribution to the Neurosciences, Grisolia, Guerri, Samson, Norton & Reinoso-Suarez, mm (eds) pp. 173–182, Elsevier Science Publishers.Google Scholar
  22. IVERSEN, S.D. (1982). Behavioural effects of substance P through dopaminergic pathways in the brain. In Substance P in the nervous system (Ciba Foundation. Symposium 91), Porter R. & O’Connor, M. (eds) p. 307, London: Pitman.Google Scholar
  23. JESSELL, T.M. (1978). Substance P release from the rat substantia nigra. Brain Res., 151, 469–478.PubMedCrossRefGoogle Scholar
  24. JESSELL, T.M. (1983). Substance P in the nervous system. In Handbook of Psychopharmacology, vol. 16, L.L. Iversen, S.D. Iversen & S.H. Snyder (eds) pp. 1–105, New York: Plenum Publishing.CrossRefGoogle Scholar
  25. JESSELL, T.M. & IVERSEN, L.L. (1977). Opiate analgesics inhibit substance P release from rat trigeminal nucleus Nature, 268, 549–551.PubMedCrossRefGoogle Scholar
  26. KANGAWA, K., MINANIMO, N., FUKUDA, A. & MATSUO, H. (1983). Neuromedin K: A novel mammalian tachykinin identified in porcine spinal cord. Biochem. biophys. Res. Commun., 14, 533–540.CrossRefGoogle Scholar
  27. KIMURA, S., OKADA, M., GUGITA, Y., KANAZAWA, I. & MUNEKATA, E. (1983). Novel neuropeptides, neurokinin-α and -β, isolated from porcine spinal cord. Proc. Japan. Acad. Sci. Ser. B., 59, 101–104.CrossRefGoogle Scholar
  28. LIANG, T. & CASCIERI, M.A. (1981). Substance P receptor on parotid cell membranes. J. Neuroscience, 1, 1133–1141.PubMedGoogle Scholar
  29. LEE, C.M. (1982). Enzymic inactivation of substance P in the central nervous system. In Substance Pin the nervous system (Ciba Foundation Symposium 91), Porter, R. & O’Connor, M. (eds) pp. 165–185, London: Pitman.Google Scholar
  30. LEE, C.M., EMSON, P.C. & IVERSEN, L.L. (1980). The development and application of a novel N-terminal directed substance P antiserum. Life Sciences, 27, 534–543.Google Scholar
  31. LEE, C.M., IVERSEN, L.L., HANLEY, M.R. & SANDBERG, B.E.B. (1982). The possible existence of multiple receptors for substance P. Naunyn-Schmiedeberg’s Arch. Pharmac., 318, 281–287.CrossRefGoogle Scholar
  32. LEE, C.M., JAVITCH, J.A. & SNYDER, S.H. (1983). 3H-substance P binding to salivary gland membranes regulation by guanyl nucleotides and divalent cations. Mol Pharmac., 23, 563–569.Google Scholar
  33. LEE, C.M., SANDBERG, B.E., HANLEY, R.M. & IVERSEN, L.L. (1981) Purification and characterization of a membrane-bound substance P-degrading enzyme from human brain. Eur. J. Biochem., 114, 315–327.PubMedCrossRefGoogle Scholar
  34. LLORENS, C., GACEL, G., SERTS, J.-P. et al. (1980). Rational design of enkephalinase inhibitors: substrate specificity of enkephalinase studied from inhibitory potency of various dipeptides. Biochem. biophys. Res. Commun, 96, 1710–1716.PubMedCrossRefGoogle Scholar
  35. MAGGIO, J.E., SANDBERG, B.E.B., BRADLEY, C.V., IVERSEN, L.L., SANTIKARN, S., WILLIAMS, B.H., HUNTER, J.C. & HANLEY, M.R. (1983). Substance K: A novel tachykinin in mammalian spinal cord. In Substance P — Dublin 1983, Skrabanek, P. & Powell, D. (eds) p. 20, Dublin: Boole Press.Google Scholar
  36. MATSAS, R., FULCHER, I.S., KENNY, A.J. & TURNER, A.J. (1983). Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc. nat. Acad. Sci. U.S.A., 80, 3111–3115.CrossRefGoogle Scholar
  37. MICHELL, R.H., KIRK, C.J., JONES, L.M., DOWNES, C.P. & CREBA, J.A. (1983). The stimulation of inositol lipid metabolism that accompanies calcium mobilisation in stimulated cells: defined characteristics and unanswered questions. Phil. Trans. R. Soc. Series B, 296, 123–133.CrossRefGoogle Scholar
  38. NAKATA, Y., KUSAKA, Y., YAJIMA, H. & SEGAWA, HH (1981). Active uptake of substance P carboxy-terminal heptapeptide (5–11) into rat brain and rabbit spinal cord slices. J. Neurochem., 37(6), 1529–1534.PubMedCrossRefGoogle Scholar
  39. NAWA, H., HIROSE, T., TAKASHIMA, H., INAYAMA, S. & NAKANISHI, S. (1983). Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature, 306, 32–36.PubMedCrossRefGoogle Scholar
  40. NICOLL, R.A., SCHENKER, C. & LEEMAN, S.E. (1980). Substance P as a transmitter candidate. Ann. Rev. Neurosci., 3, 227–268.PubMedCrossRefGoogle Scholar
  41. ORLOWSKI, M., WILK, E., PEARCE, S. & WILK, S. (1979). Purification and properties of a prolyl endopeptidase from rabbit brain. J. Neurochem., 3, 461–469.CrossRefGoogle Scholar
  42. OTSUKA, M. & KONISHI, S. (1976). Release of substance P-like immunoreactivity from isolated spinal cord of newborn rat. Nature, 264, 88–84.CrossRefGoogle Scholar
  43. PERNOW, B. (1983). Substance P. Pharmac. Rev., 35, 85–141.Google Scholar
  44. QUIRION, R., SHULTS, C.W., MOODY, T.W., PERT, C.B., CHASE, T.N. & O’DONOHUE, T.L. (1983). Auto-radiographic distribution of substance P receptors in rat central nervous system. Nature, 303, 714–716.PubMedCrossRefGoogle Scholar
  45. ROSSELL, S., BJOKROTH, U., XU, J.-C. & FOLKERS, K. (1983). The pharmacological profile of a substance P antagonist. Evidence for the existence of subpopulations of SP receptors. Acta. physiol. scand., 117, 445–450.CrossRefGoogle Scholar
  46. ROTHMAN, R.B., DANKS, J.A., HERKENHAM, M., CASCIERI, M.A., CHICCHI, G.C., LIANG, T. & PERT, C.B. (1984). Autoradiographic localization of a novel peptide binding site in rat brain using the substance P analog, eledoisin. Neuropeptides (in press).Google Scholar
  47. SANDBERG, B.E., LEE, C.M., HANLEY, M.R. & IVERSEN, L.L. (1981). Synthesis and biological properties of enzyme-resistant analogs of substance P. Eur. J. Biochem., 114, 329–337.PubMedCrossRefGoogle Scholar
  48. SCHWARTZ, J.C., DE LA BAUME, S., MALFROY B. et al. (1980). Properties, variations and possible synaptic functions of ‘Enkephalinase’: a newly characterized dipeptidyl carboxypeptidase. Advances in Biochemical Psychopharmacology, Costa, E. & Trabucchi, M. (eds) pp. 219–235, New York: Raven Press.Google Scholar
  49. SKRABANEK, P. & POWELL, D. (eds) (1983). Substance P — Dublin, Dublin: Boole Press.Google Scholar
  50. STRITTMATER, S.M., LO, M.M.S., JAVITCH, J.A. & SNYDER, S.H. (1984). Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proc. natn. Acad. Sci. U.S.A., 81, 1599–1603.CrossRefGoogle Scholar
  51. VIGER, A., BEAUJOUAN, J.C., TORRENS, Y. & GLOWINSKI, J. (1983). Specific binding of a 125I-substance P derivative to rat brain synaptosomes. J. Neurochem., 40, 1030–1039.CrossRefGoogle Scholar
  52. WATSON, S.P. (1983a). Pharmacological characterization of a substance P antagonist, [DArg 1 ,D-Pro 2 ,D-Trp 7,9, D-Leu 11 ]-substance P. Br. J. Pharmac., 80, 205–209.CrossRefGoogle Scholar
  53. WATSON, S.P. (1983b). Rapid degradation of [3H]-substance P in guinea-pig ileum and rat vas deferens in vitro. Br. J. Pharmac., 79, 543–552.CrossRefGoogle Scholar
  54. WATSON, S.P. & DOWNES, C.P. (1984). Substance P induced breakdown of inositol phospholipids in guinea pig ileum and rat hypothalamus. Eur. J. Pharmac. (in press).Google Scholar
  55. WATSON, S.P. & IVERSEN, L.L. (1984). 3H-substance P binding to guinea-pig ileum longitudinal smooth muscle membranes. Regulatory Peptides (in press).Google Scholar
  56. WATSON, S.P., SANDBERG, B.E.B., HANLEY, M.R. & IVERSEN, L.L. (1983). Tissue selectivity of substance P alkyl esters: suggesting multiple receptors. Eur. J. Pharmac., 87, 77–84.CrossRefGoogle Scholar
  57. YAKSH, T.L., JESSELL, T.M., GAMSE, R., MUDGE, A.W. & LEEMAN, S.E. (1980). Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature, 286, 155–157.PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • L. L. Iversen
    • 1
  1. 1.Merck Sharp & Dohme Research LaboratoriesNeuroscience Research CentreEssexUK

Personalised recommendations