Comparison of endothelium-dependent relaxation by acetylcholine and endothelium-independent relaxation by light in the rabbit aorta

  • R. F. Furchgott
  • W. Martin
  • D. Jothianandan
  • G. M. Villani


Relaxation of preparations of mammalian arteries by acetylcholine (ACh) requires the presence of endothelial cells (Furchgott & Zawadzki, 1980; Furchgott et al., 1981). It has been demonstrated that ACh stimulates these cells to produce and release a factor that acts on the smooth muscle cells to cause relaxation (Furchgott & Zawadzki, 1980; Furchgott, 1983). This endothelium-derived relaxing factor (EDRF) has not yet been identified. Indirect evidence suggests that it may be a free radical (Furchgott et al., 1981) or a very labile aldehyde or ketone (Griffith et al., 1984). Relaxation of arteries by some other vasodilators, including the calcium ionophore A23187, also depends on the release of EDRF (for reviews, see Furchgott, 1983, 1984). In contrast, some vasodilators, such as glyceryl trinitrate, do not require endothelial cells to produce relaxation, but act directly on the smooth muscle cells.


Arachidonic Acid Methylene Blue Guanylate Cyclase Rabbit Aorta Calcium Ionophore A23187 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BOWMAN; A. & DRUMMOND, A.H. (1984). Cyclic GMP mediates neurogenic relaxation in the bovine retractor penis muscle. Br. J. Pharmac., 81, 665–674.CrossRefGoogle Scholar
  2. BOWMAN, A. & GILLESPIE, J.S. (1983). Neurogenic vasodilatation in isolated bovine and canine penile arteries. J. Physiol., 341, 603–616.PubMedPubMedCentralCrossRefGoogle Scholar
  3. BOWMAN, A., GILLESPIE, J.S. & POLLOCK, D. (1982). Oxyhaemoglobin blocks non-adrenergic noncholinergic inhibition in bovine retractor penis muscle. Eur. J. Pharmac., 85, 221–224.CrossRefGoogle Scholar
  4. CHERRY, P.D., FURCHGOTT, R.F. & ZAWADZKI, J.V. (1983). The endothelium-dependent relaxation of vascular smooth muscle by unsaturated fatty acids. Fedn Proc., 42, 619 (abstract).Google Scholar
  5. CHERRY, P.D., FURCHGOTT, R.F., ZAWADZKI, J.V. & JOTHIANANDAN, D. (1982). The role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc. natn. Acad. Sci. U.S.A., 79, 2016–2110.CrossRefGoogle Scholar
  6. DIAMOND, J. & CHU, E.B. (1983). Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin. Res. Comm. Chem. Pathol. Pharmacol. 41, 369–381.Google Scholar
  7. FURCHGOTT, R.F. (1971). Effects of various agents on photorelaxation of rabbit aorta strips. In Physiology and Pharmacology of Vascular Neuroeffector systems. Bevan, J.A., Furchgott, R.F., Maxwell, R.A. & Somlyo, A.P. (eds) pp. 247–262, Basel: Karger.CrossRefGoogle Scholar
  8. FURCHGOTT, R.F. (1983). Role of endothelium in responses of vascular smooth muscle. Circ. Res., 53, 557–573.PubMedCrossRefGoogle Scholar
  9. FURCHGOTT, R.F. (1984). Role of endothelium in responses of vascular smooth muscle to drugs. A. Rev. Pharmac. Toxicol., 24, 175–197.CrossRefGoogle Scholar
  10. FURCHGOTT, R.F., CHERRY, P.D., ZAWADZKI, J.V. & JOTHIANANDAN, D. (1984). Endothelial cells as mediators of vasodilation of arteries. J. cardiovasc. Pharmac. 6, S336–S343.CrossRefGoogle Scholar
  11. FURCHGOTT, R.F., ERREICH, S.J. & GREENBLATT, E. (1961). The photoactivated relaxation of smooth muscle of rabbit aorta. J. gen. Physiol., 44, 499–519.PubMedPubMedCentralCrossRefGoogle Scholar
  12. URCHGOTT, R.F. & JOTHIANANDAN, D. (1983). Relation of cyclic GMP levels to endothelium-dependent relaxation by acetylcholine in rabbit aorta. Fedn Proc., 42, 619 (abstract).Google Scholar
  13. FURCHGOTT, R.F. & JOTHIANANDAN, D. (1984). Relaxation of rabbit aorta by light is associated with an increase in cyclic GMP. Fed. Proc., 43, 737 (abstract).Google Scholar
  14. FURCHGOTT, R.F., JOTHIANANDAN, D. & CHERRY, P.D. (in press). Endothelium-dependent responses: The last three years. In Third International Symposium on Mechanism of Vasodilatation. Vanhoutte, P.M. et al. (eds) Basel: Karger.Google Scholar
  15. FURCHGOTT, R.F. & ZAWADSKI, J.V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376.PubMedCrossRefGoogle Scholar
  16. FURCHGOTT, R.F., ZAWADZKI, J.V. & CHERRY, P.D. (1981). Role of endothelium in the vasodilator response to acetylcholine. In Vasodilatation. Vanhoutte, P.M. & Leusen, I. (eds) pp. 49–66, New York: Raven Press.Google Scholar
  17. GRIFFITH, T.M., EDWARDS, D.H., LEWIS, M.J., NEWBY, A.C. & HENDERSON, A.H. (1984). The nature of endothelium-derived vascular relaxant factor. Nature, 308, 645–647.PubMedCrossRefGoogle Scholar
  18. GRUETTER, C.A., BARRY, B.K., McNAMARA, D.B., GRUETTER, D.Y., KADOWITZ, P.J. & IGNARRO, L.J. (1979). Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J. Cyclic Nucleotide Res., 5, 211–224.PubMedGoogle Scholar
  19. GRUETTER, C.A., GRUETTER, D.Y., LYON, J.E., KADOWITZ, P.J. & IGNARRO, L.F. (1981). Relationship between cyclic guanosine 3′:5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrate and nitrite oxide: effects of methylate blue and methemoglobin. J. Phannac. exp. Ther., 219, 181–186.Google Scholar
  20. HOLZMANN, S. (1982). Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic Nucleotide Res., 8, 409–419.PubMedGoogle Scholar
  21. IGNARRO, L.J., BURKE, T.M., WOOD, K.S., WOLIN, M.S. & KADOWITZ, P.J. (1984). Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J. Pharmac. exp. Ther., 228, 682–690.Google Scholar
  22. KARLSSON, J.O.G., AXELSSON, K.L. & ANDERSSON, R.G.G. (1984). Effects of ultraviolet radiation on the tension and the cyclic GMP level of bovine mesenteric arteries. Life Sci., 34, 1555–1563.PubMedCrossRefGoogle Scholar
  23. KUKOVETZ, W.R., HOLZMANN, S., WURM, A. & POCH, B. (1979). Evidence for cyclic GMP-mediated relaxant effect of nitro-compounds in coronary smooth muscle. Naunyn-Schmiedeberg’s Arch. Pharmac., 310, 129–138.CrossRefGoogle Scholar
  24. KUKOVETZ, W.R., POCH, G. & HOLZMANN, S. (1981). Cyclic nucleotides and relaxation of vascular smooth muscle. In Vasodilatation. Vanhoutte, P.M. & Leusen, I. (eds) pp. 339–353, New York: Raven Press.Google Scholar
  25. MARTIN, W., VILLANI, G.M. & FURCHGOTT, R.F. (1984). Haemoglobin and methylene blue selectively inhibit relaxation of rabbit aorta by agents which increase cyclic GMP levels. Fedn Proc., 43, 737 (abstract).Google Scholar
  26. MURAD, F., ARNOLD, W.P., MITfAL, C.K. & BRUAGHLER, J.M. (1979). Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv. Cyclic Nucleotide Res., 11, 175–204.PubMedGoogle Scholar
  27. RAPOPORT, R.M. & MURAD, F. (1983). Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ. Res., 52, 352–357.PubMedCrossRefGoogle Scholar
  28. SINGER, H.A. & PEACH, M.J. (1983a). Endothelium-dependent relaxation of rabbit aorta. II. Inhibition of relaxation stimulted by methacholine and A23187 with antagonists of arachidonic acid metabolism. J. Pharmac. exp. Ther., 227, 796–801.Google Scholar
  29. SINGER, H.A. & PEACH, M.J. (1983b). Endothelium-dependent relaxation of rabbit aorta. I. Relaxation stimulated by arachidonic acid (AA). J. Pharmac. exp. Ther., 227, 790–795.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • R. F. Furchgott
    • 1
  • W. Martin
  • D. Jothianandan
  • G. M. Villani
  1. 1.Department of PharmacologyState University of New York, Downstate Medical CenterBrooklynUSA

Personalised recommendations